• Title/Summary/Keyword: Peak runoff

Search Result 414, Processing Time 0.021 seconds

Intra-event variability of bacterial composition in stormwater runoff from mixed land use and land cover catchment

  • Paule-Mercado, Ma. Cristina A.;Salim, Imran;Lee, Bum-Yeon;Lee, Chang-Hee;Jahng, Deokjin
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • Microbial community and composition in stormwater runoff from mixed land use land cover (LULC) catchment with ongoing land development was diverse across the hydrological stage due different environmental parameters (hydrometeorological and physicochemical) and source of runoff. However, limited studies have been made for bacterial composition in this catchment. Therefore, this study aims to: (1) quantify the concentration of fecal indicator bacteria (FIB), stormwater quality and bacterial composition and structure according to hydrological stage; and (2) determine their correlation to environmental parameters. The 454 pyrosequencing was used to determine the bacterial community and composition; while Pearson's correlation was used to determine the correlation among parameters-FIB, stormwater quality, bacterial composition and structure-to environmental parameters. Results demonstrated that the initial and peak runoff has the highest concentration of FIB, stormwater quality and bacterial composition and structure. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were dominant bacteria identified in this catchment. Furthermore, the 20 most abundant genera were correlated with runoff duration, average rainfall intensity, runoff volume, runoff flow, temperature, pH, organic matter, nutrients, TSS and turbidity. An increase of FIB and stormwater quality concentration, diversity and richness of bacterial composition and structure in this study was possibly due to leakage from septic tanks, cesspools and latrines; feces of domestic and wild animals; and runoff from forest, destroyed septic system in land development site and urban LULC. Overall, this study will provide an evidence of hydrological stage impacts on the runoff microbiome environment and public health perspective.

유한 요소법을 이용한 중소하천 유역에서의 이동호우에 대한 유출특성 분석

  • Cho, Hyeon-Kyeong;Lee, Yeung-Hwa;Choi, Yun-Yeong
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.415-424
    • /
    • 1998
  • In the rainfalll-runoff relation, consideration of the spatial movement of storms is very unportant in designing a hydraulic structure or evaluating an environmental influence for land usage. Because of thins reason, this study has suggested the finite element model which consider the spatial movement of a storm and it was applied on a small river basin(Wi stream basin). In the application of the model, the basin was treated as a pivot point and the storms are simulated 10 movement in each directions. As a result, It shows that the storms moving from north to south have higher peak discharge and faster peak time than the storms moving in other directions. So these characteristics have to be considered In the designation of a hydraulic structure or evaluation of an environmental influence.

  • PDF

Runoff Characteristics of Rapid Urban Expansion Area according to The Type of Land Use (급속한 도시확장지역의 토지이용도 종류에 따른 유출특성 비교)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1079-1088
    • /
    • 2013
  • The objective of this paper is compare to landuse type for calculating peak flood and soil loss in rapidly expansion urban area. This study compares two landuse maps, including numerical landuse map and aerial photograph landuse map, for calculating the ratio of urban and agriculural area, curve number, time of concentration, peak flood discharge, and soil loss. It is found that flood discharge calculated using aerial photograph landuse map are larger than that calculated using numerical landuse map, and soil loss calculated using aerial photograph landuse map are smaller than that calculated using numerical landuse map. Results also indicate that landuse chage in rapidly expansion urban area significantly influences flood discharge and soil loss.

Flood Estimation Using Critical Storm Duration (임계지속시간을 고려한 설계홍수량 추정)

  • Kang, Moon-Seong;Park, Seung-Woo;Koo, Jee-Hee;Her, Young-Ku
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.300-305
    • /
    • 2001
  • The objectives of the thesis are to estimate flood using critical storm duration. The hydrological models were tested with field data from two small watersheds. The hydrological parameters were defined using the GIS system. And the results from different peak runoff equations and hydrologic models were found to simulate runoff hydrographs that are comparative to the observed.

  • PDF

Application of a Hydrologic Model ANSWERS to Ranweol Watersheds (수문모형 ANSWERS의 반월유역에의 적용)

  • 김병진;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.81-90
    • /
    • 1988
  • A physically-based, distributed hydrologic model ANSWERS is described and its test results with two small watersheds near the Banweol reservoir are presented. The sizes of the watersheds are 270 ha and 477 ha, respectively. The smaller one has a mild topography with 40 percent forest area. The other has a steeper slope and 87 percent forest area. The model parameters were calibrated using observed runoff data and used for storm runoff simulation. The simulated peak discharges were in good agreement with the data. The model underestimated the recession parts of hydrographa as compared to the observed ones.

  • PDF

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Runoff Analysis for Urban Unit Subbasin Based on its Shape (유역형상을 고려한 도시 단위 소유역의 유출 해석)

  • Hur, Sung-Chul;Park, Sang-Sik;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.491-501
    • /
    • 2008
  • In order to describe runoff characteristics of urban drainage area, outflow from subbasins divided by considering topography and flow path, is analyzed through stormwater system. In doing so, concentration time and time-area curve change significantly according to basin shape, and runoff characteristics are changed greatly by these attributes. Therefore, in this development study of FFC2Q model by MLTM, we aim to improve the accuracy in analyzing runoff by adding a module that considers basin shape, giving it an advantage over popular urban hydrology models, such as SWMM and ILLUDAS, that can not account for geometric shape of a basin due to their assumptions of unit subbasin as having a simple rectangular form. For subbasin shapes, symmetry types (rectangular, ellipse, lozenge), divergent types (triangle, trapezoid), and convergent types (inverted triangle, inverted trapezoid) have been analyzed in application of time-area curve for surface runoff analysis. As a result, we found that runoff characteristic can be quite different depending on basin shape. For example, when Gunja basin was represented by lozenge shape, the best results for peak flow discharge and overall shape of runoff hydrograph were achieved in comparison to observed data. Additionally, in case of considering subbasin shape, the number of division of drainage basin did not affect peak flow magnitude and gave stable results close to observed data. However, in case of representing the shape of subbasins by traditional rectangular approximation, the division number had sensitive effects on the analysis results.

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (I) - Theory and Model - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) - 이론 및 모형 -)

  • Jung, In Kyun;Lee, Mi Seon;Park, Jong Yoon;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.697-707
    • /
    • 2008
  • The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) by Kim (1998) predicts the temporal variation and spatial distribution of overland flow, subsurface flow and stream flow in a watershed. The model programmed with C++ language on Unix operating system adopts single flowpath algorithm for water balance simulation of flow at each grid element. In this study, we attempted to improve the model by converting the code into FORTRAN 90 on MS Windows operating system and named as ModKIMSTORM. The improved functions are the addition of GAML (Green-Ampt & Mein-Larson) infiltration model, control of paddy runoff rate by flow depth and Manning's roughness coefficient, addition of baseflow layer, treatment of both spatial and point rainfall data, development of the pre- and post-processor, and development of automatic model evaluation function using five evaluation criteria (Pearson's coefficient of determination, Nash and Sutcliffe model efficiency, the deviation of runoff volume, relative error of the peak runoff rate, and absolute error of the time to peak runoff). The modified model adopts Shell Sort algorithm to enhance the computational performance. Input data formats are accepted as raster and MS Excel, and model outputs viz. soil moisture, discharge, flow depth and velocity are generated as BSQ, ASCII grid, binary grid and raster formats.

Peak drought index analysis of cheongmicheon watershed using meteorological and hydrological drought index (기상학적 및 수문학적 가뭄지수를 이용한 청미천 유역의 첨두가뭄지수 분석)

  • Kim, Soo Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • This study analyzed the peak drought severity and drought duration of the Cheongmicheon watershed from 1985 to 2015 to assess the lag time of peak drought severity between several drought indices. Standardized Precipitation Index (SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index (SPEI) based on precipitation and evapotranspiration were applied as meteorological drought indices. Streamflow Drought Index (SDI) based on runoff data was applied as hydrological drought index. In case of SDI, we used Soil and Water Assessment Tool (SWAT) model for simulation of daily runoff data. As a result, the time of peak drought severity of SDI occurred after the occurrence of SPI and SPEI. The lag time for the peak drought severity, on average, between SDI and SPI was 0.59 months while SDI and SPEI was 0.79 months. As compared with SDI, the maximum delay was 2 months for both SPI and SPEI. This study results also shows that even though the rainfall events were able to cope with meteorological droughts, they were not always available to solve the hydrological droughts in the same time.

The Watershed Imperviousness Impact for the characteristic of stormwater runoff (유역의 불투수성에 따른 강우유출특성 비교)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Huh, Beom-Nyung;Choi, Ji-Yong;Kim, Yeong-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • The purpose of this study is to understand imperviousness impact for the characteristics of stormwater runoff and water temperature. The land-use map was used to estimate the watershed imperviousness(percent of impermeable area) and the RMS(Remote Monitoring System) was used to evaluate the stormwater runoff of watershed. This study was investigated for two streams(Jiam and Gongji) in Chunchon City. The detailed results of these studies are as follows; The imperviousness(%) of two watersheds(Jiam and Gongji) estimated by spatial analysis which is main function of GIS were 0.24% and 24.16%. So, Gongji watershed as urban area was about 100 times than jiam watershed as forest area. In case of rainfall of low intensity, stormwater runoff flowrate in higher imperviousness area(Gongji) was more than it in forest area(jiam). Also, The time to peak flowrate(Tp) was short in Gongji stream and the water temperature difference between Gongji and Jiam stream was about $4.4^{\circ}C$ in summer.