• 제목/요약/키워드: Peak response time

검색결과 402건 처리시간 0.021초

유체 충격압력 시계열의 모델링에 관한 기초 연구 (A Fundamental Study for Time History Modeling of Fluid Impact Pressure)

  • 노인식;이재만;염철웅
    • 대한조선학회논문집
    • /
    • 제47권2호
    • /
    • pp.242-247
    • /
    • 2010
  • To consider effects of essential parameters of water impact pressure on dynamic structural responses of bow bottom structures, a parametric study for a ship bottom panel is carried out. The idealized pressure time history models were assumed by triangular and rectangular shapes in time domain. The main loading parameters are duration time and peak pressure value maintaining the same impulse value. The structural models for local bottom stiffened panels of a container ship are analysed. The natural frequency analysis and transient dynamic response analysis are performed using MSC/NASTRAN. Added mass effects of contacting water are considered and the pressure distributions are assumed to be uniform in the whole water contacting surface. The effects of loading parameters on the structural responses, especially maximum displacements, are considered. Besides the peak pressure value, effects of duration time correlated with natural frequencies are thought to be the important parameters.

시간 영역에서의 초광대역 안테나 특성 해석 (Characterization and Analysis of UWB Antennas in Time Domain)

  • 송종화;박영진
    • 한국전자파학회논문지
    • /
    • 제17권3호
    • /
    • pp.287-294
    • /
    • 2006
  • 본 논문은 시간 영역에서의 초광대역 안테나 특성 해석에 대하여 기술한다. 시간 영역 해석을 위해 임펄스 전파 채널에 대한 모델링을 제시하였고, 이를 근거로 초광대역 안테나에 대한 임펄스 응답의 유도 방법을 제시하였다. 또한, 시간 영역에서의 안테나의 특성을 나타내는 파라미터로서 떨림(ringing), 임펄스 응답의 첨두치, 그리고 응답 폭을 제시하였다. 임펄스 응답 측정을 위하여, 변형된 초광대역 코니컬 모노폴 안테나, 초광대역 TEM 혼 안테나, 초광대역 stepped fat 모노폴 안테나를 설계 및 제작하였다. 제작된 모든 안테나는 측정을 통하여 3 GHz 이상의 대역폭을 갖는 초광대역 특성을 보였다. 무반향 반사실에서 구한 각 안테나의 임펄스 응답 특성으로부터, 이득이 높은 TEM 혼이 가장 높은 첨두치를 가짐을 보였고, 대역폭이 가장 작은 stepped fat 모노폴 안테나가 가장 넓은 임펄스 응답 폭을 가짐을 확인했다. 또한, 떨림 현상은 TEM 혼안테나를 제외한 두 안테나에서 관찰되었다.

퐁력전원이 피크타임과 발전설비구성에 미치는 영향분석: 제3차 신재생에너지 기술개발 및 이용.보급 기본계획 기준 (Wind Power Generation: Its Impact on Peak Time and Future Power Mix)

  • 이진호;김수덕
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.867-876
    • /
    • 2009
  • Although renewable power is regarded a way to active response to climate change, the stability of whole power system could be a serious problem in the future due to its uncertainties such as indispatchableness and intermittency. From this perspective, the peak time impact of stochastic wind power generation is estimated using simulation method up to year 2030 based on the 3rd master plan for the promotion of new and renewable energy on peak time. Result shows that the highest probability of wind power impact on peak time power supply could be up to 4.41% in 2030. The impact of wind power generation on overall power mix is also analyzed up to 2030 using SCM model. The impact seems smaller than expectation, however, the estimated investment cost to make up such lack of power generation in terms of LNG power generation facilities is shown to be a significant burden to existing power companies.

Reconstruction of missing response data for identification of higher modes

  • Shrikhande, Manish
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.323-336
    • /
    • 2011
  • The problem of reconstruction of complete building response from a limited number of response measurements is considered. The response at the intermediate degrees of freedom is reconstructed by using piecewise cubic Hermite polynomial interpolation in time domain. The piecewise cubic Hermite polynomial interpolation is preferred over the spline interpolation due to its trend preserving character. It has been shown that factorization of response data in variable separable form via singular value decomposition can be used to derive the complete set of normal modes of the structural system. The time domain principal components can be used to derive empirical transfer functions from which the natural frequencies of the structural system can be identified by peak-picking technique. A reduced-rank approximation for the system flexibility matrix can be readily constructed from the identified mass-orthonormal mode shapes and natural frequencies.

Appliance Load Profile Assessment for Automated DR Program in Residential Buildings

  • Abdurazakov, Nosirbek;Ardiansyah, Ardiansyah;Choi, Deokjai
    • 스마트미디어저널
    • /
    • 제8권4호
    • /
    • pp.72-79
    • /
    • 2019
  • The automated demand response (DR) program encourages consumers to participate in grid operation by reducing power consumption or deferring electricity usage at peak time automatically. However, successful deployment of the automated DR program sphere needs careful assessment of appliances load profile (ALP). To this end, the recent method estimates frequency, consistency, and peak time consumption parameters of the daily ALP to compute their potential score to be involved in the DR event. Nonetheless, as the daily ALP is subject to varying with respect to the DR time ALP, the existing method could lead to an inappropriate estimation; in such a case, inappropriate appliances would be selected at the automated DR operation that effected a consumer comfort level. To address this challenge, we propose a more proper method, in which all the three parameters are calculated using ALP that overlaps with DR time, not the total daily profile. Furthermore, evaluation of our method using two public residential electricity consumption data sets, i.e., REDD and REFIT, shows that our energy management systems (EMS) could properly match a DR target. A more optimal selection of appliances for the DR event achieves a power consumption decreasing target with minimum comfort level reduction. We believe that our approach could prevent the loss of both utility and consumers. It helps the successful automated DR deployment by maintaining the consumers' willingness to participate in the program.

Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading

  • Liu, Zuqiang;Zhou, Chaofeng;Xue, Jianyang
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.39-48
    • /
    • 2019
  • This paper presents an experimental study on a 1/2 scale steel frame with archaized-style under the pseudo-dynamic loading. Four seismic waves, including El Centro wave, Taft wave, Lanzhou wave and Wenchuan wave, were input during the test. The hysteresis characteristic, energy dissipation acceleration response, displacement response, strength, stiffness and strain were analyzed. Based on the experiment, the elastoplastic dynamic time-history analysis was carried out with the software ABAQUS. The stress distribution and failure mode were obtained. The results indicate that the steel frame with archaized-style was in elastic stage when the peak acceleration of input wave was no more than 400 gal. Under Wenchuan wave with peak acceleration of 620 gal, the steel frame enters into the elastoplastic stage, the maximum inter-story drift was 1/203 and the bearing capacity still tended to increase. During the loading process, Dou-Gong yielded first and played the role of the first seismic fortification line, and then beam ends and column bottom ends yielded in turn. The steel frame with archaized-style has good seismic performance and meets the seismic design requirement of Chinese code.

Strahler 차수법칙에 따른 하천망 해상도가 수문학적 응답함수에 미치는 영향 (The Effect of The Channel Networks Resolution According to Strahler's Ordering Scheme on The Hydrological Response Function)

  • 최용준;안정민;김주철
    • 대한공간정보학회지
    • /
    • 제20권1호
    • /
    • pp.13-20
    • /
    • 2012
  • 본 연구의 목적은 유역 하천망의 발달에 따른 수문응답함수의 변화양상 분석에 있다. 이를 위한 대상유역은 보청천의 탄부수위표를 출구로 하는 소유역을 선정하였다. 적용된 하천망은 Strhler 차수분류법에 의해 구성된 하천망과 유역 내 모든 격자가 하천 또는 지표면으로 구성된 경우로 총 10가지로 구성하였다. 각각의 경우에 대해 대상유역 내 모든 격자의 지표면과 하천 배수경로 길이를 산정하였으며 Nash 모형을 이용하여 수문응답함수를 결정하였다. 분석결과 하천망이 발달함에 따라 수문응답함수의 첨두유량은 크게 나타나며, 첨두시간은 작아지는 양상을 보였다. 또한 응답함수의 통계적 특성을 살펴 본 결과 하천망의 발달에 따라 유하시간의 평균(지체시간)과 분산이 지수적으로 감소함을 알 수 있었다.

지반응답해석기법의 차이에 의한 지반응답 분산도 평가 (Influence of Analysis Models on Variation of Ground Response during Earthquake)

  • 김성렬;최재순;김수일;박대영;박성용;김기풍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.

Impacts of temporal dependent errors in radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.180-180
    • /
    • 2015
  • Weather radar has been widely used in measuring precipitation and discharge and predicting flood risks. The radar rainfall estimate has one of the essential problems in terms of uncertainty and accuracy. Previous study analyzed radar errors to reduce its uncertainty or to improve its accuracy. Furthermore, a recent analyzed the effect of radar error on rainfall-runoff using spatial error model (SEM). SEM appropriately reproduced radar error including spatial correlation. Since the SEM does not take the time dependence into account, its time variability was not properly investigated. Therefore, in the current study, we extend the SEM including time dependence as well as spatial dependence, named after Spatial-Temporal Error Model (STEM). Radar rainfall events generated with STEM were tested so that the peak runoff from the response of a basin could be investigated according to dependent error. The Nam River basin, South Korea, was employed to illustrate the effects of STEM on runoff peak flow.

  • PDF