• Title/Summary/Keyword: Peak flow reduction effect

Search Result 37, Processing Time 0.025 seconds

A Change of Peak Outflows due to Decision of Flow Path in Storm Sewer Network (우수관망 노선 결정에 따른 첨두유출량 변화 분석)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5151-5156
    • /
    • 2010
  • In the previous researches for storm sewer design, the flow paths in overall network were determined to minimize the construction cost and then, it was not considered the superposition effect of runoff hydrographs in the sewer pipes. However, in this research, the flow paths are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the flows in the sewer pipes. This is accomplished by distributing the inflows that enter into each junction by changing the flow path in which pipes are connected between junctions. In this paper, the superposition effect and peak outflows at outlet were analyzed considering the changes of the flow paths in the sewer network. Then, the flow paths are determined using genetic algorithm and the objective function is to minimize the peak outflow at outlet. As the applied result for the sample sewer network, the difference between maximum and minimum peak outflows which are caused by the change of flow path was about 5.6% for the design rainfall event of 10 years frequency with 30 min. duration. Also, the typhoon 'Rusa' which occurred at 2002 was applied to verify the reduction of inundation risk for the excessive rainfall, and then, the amount of overflows was reduced to about 31%.

A Study on the Peak Runoff Reduction Effect of Seolleung·Jeongneung Zone by Applying LID(Low Impact Development) System based on the Landscape Architectural Technology (조경기술기반 LID 시스템 적용을 통한 선릉·정릉 권역의 첨두유출량 분석)

  • Kim, Tae-Han;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.126-133
    • /
    • 2017
  • This study analyzed hydrological changes of stormwater runoff of Seolleung Jeongneung zone according to the application of LID system based on landscape Architectural technology. The results are as follows. First, when flooding occurred in Gwanghwamun in July 27, 2011, the maximum instantaneous rainfall amount was 183 mm/hr recorded at 10:00 on 27th for 10 minutes, and it was confirmed that rainfall intensity more than three times as high as the maximum rainfall of 57.5 mm/hr. Second, it is possible to control peak flow rate in the case of 1,500mm of soil thickness, so that it is possible to improve the vulnerability of flood damage in Seolleung and Jeongneung zone when applying the LID system. Third, in the berm height scenario, peak flow rate control was not controled in all depth level models, but the first stormwater runoff was delayed by 4 hours and 10 minutes compared to the soil thickness scenario. It was interpreted as a relatively important indicator the soil thickness for the initial stromwater runoff reduction and the berm height for the peak runoff. Through this, the systematic adaptation of landscape-friendly ecological factors within the cultural property protection zone could theoretically confirm the effects of flood disaster prevention.

The Effect of Decentralized Rainwater Tank System on the Reduction of Peak Runoff - A Case Study at M Village - (빗물저류조의 분산배치에 따른 첨두유출 저감효과 분석 - M 마을 사례 -)

  • Han, Moo-Young;Kum, So-Yoon;Mun, Jung-Soo;Kwak, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Recently climate change and increase of surface runoff caused the urban flooding. Traditional way of dealing with urban flooding has been to increase the sewer capacity or construction of pumping stations, however, it is practically almost impossible because of time, money and traffic problems. Multipurpose DRMS (Decentralized Rainwater Management System) is a new paradigm proposed and recommended by NEMA (National Emergency Management Agency) for both flood control and water conservation. Suwon City has already enacted the ordinance on sound water cycle management by DRMS. In this study, a flood prone area in Suwon is selected and analysis of DRMS has been made using XP-SWMM for different scenarios of RT installation with same total rainwater tank volume and location. Installing one rainwater tank of 3,000$m^3$ can reduce the peak flow rate by 15.5%. Installing six rainwater tanks of 500$m^3$ volume in the area can reduce the peak flow rate by 28%. Three tanks which is concentrated in the middle region can reduce peak rate more than evenly distributed tanks. The method and results found from this study can be used for the design and performance prediction of DRMS at a flood prone area by supplementing the existing sewer system without increase of the sewer capacity.

Sensitivity Analysis on Flood Level Changes by Offline Storage Creation Based on Unsteady Flow Modeling (부정류 모의 기반 오프라인 저류지 조성에 따른 홍수위 변화 민감도 분석)

  • Eun-kyung Jang;Un Ji;Sanghyeok Kim;Jiwon Ryu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.217-225
    • /
    • 2023
  • This study analyzed the effect of flood level reduction in the case of creating and operating offline storage for the Jangdong district, which can be used as a flood buffer space for the Geumgang River, through one-dimensional unsteady flow numerical simulation. In particular, the sensitivity analysis of changes in the height and width (length) of transverse weirs on flood level changes was performed to provide quantitative information necessary for flood control facility (embankment) design. As a result of analyzing the flood control effect of the offline storage based on the peak flood discharge and level, spatially, the flood control effect at the planned flood buffer space site and the downstream end was confirmed, and it was confirmed that the flood reduction effect at the downstream occurred the most. By design conditions of the transverse overflow weir, the greatest flood reduction effect was found under the condition that the overflow weir height based on the 50-year frequency flood level and the transverse overflow weir width (length) of 125 m were considered. The effect of delaying the time to reach the maximum flood due to the operation of the offline storage site was also presented based on unsteady flow modeling.

Numerical Investigation on Radiation Characteristics of Noise Propagating through Asymmetry Aero-Intake (비대칭 공기흡입구를 통해 전파하는 소음의 방사특성에 관한 수치적 연구)

  • Park, Yong-Hwan;Kim, Min-Woo;Lee, Kyu-Ho;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1476-1481
    • /
    • 2007
  • Numerical investigation on radiation characteristics of discrete frequency noise from asymmetry aero-intakes was carried out. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high order finite difference scheme, non-reflecting boundary conditions, oversetgrid techniques. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that noise reduction at downward peak radiation angle can be achieved. The scattering of the radiating acoustic wave by background mean flow shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect.

  • PDF

Temperature and diameter effect on hydrodynamic characteristic of surfactant drag-reducing flows

  • Indartono Y.S.;Usui H.;Suzuki H.;Komoda Y.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.157-164
    • /
    • 2005
  • Hydrodynamic characteristic of surfactant drag-reducing flows is still not fully understood. This work investigated the temperature and diameter effect on hydrodynamic characteristic of cationic surfactant drag reducing flows in pipes. Solution of oleyl bishydroxyethyl methyl ammonium chloride (Ethoquad O/12), 900 ppm, as a cationic surfactant and sodium salicylate (NaSal), 540 ppm, as a counter-ion was tested at 12, 25, 40, and $50^{\circ}C$ in pipes with diameter of 13, 25, and 40 mm. Drag reduction effectiveness of this surfactant solution was evaluated in 25 mm pipe from 6 to $75^{\circ}C$. Rheological characteristic of this solution was measured by stress control type rheometer with cone-and-plate geometry. Scale-up laws proposed by previous investigators were used to evaluate the flow characteristic of the solution. It was found that this surfactant solution has clear DR capability until $70^{\circ}C$. Result of this work suggested that temperature has a significant influence in changing the hydrodynamic entrance length of surfactant drag reducing flows. From rheological measurement, it was found that the solution exhibits Shear Induced Structure at all temperatures with different degree of peak viscosity and critical shear rate.

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

Numerical Study on the Thermal NOx Reduction by Addition of Moisture in LNG Flame (가습 공기의 LNG 화염 Thermal NOx 저감의 수치 해석적 연구)

  • Shin, Mi-Soo;Park, Mi-Sun;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.837-842
    • /
    • 2014
  • A computer program is developed for the prediction of NO generation by the addition of water moisture and water electrolysis gas in LNG-fired turbulent reacting flow. This study is the first part to deal with the moisture effect on NO generation. In this study, parametric investigation has been made in order to see the reduction of thermal NO as a function of amount of moisture content in a LNG-fired flame together with the swirl and radiation effect. First of all, calculation results show that the flame separation together with the NO concentration separation are observed by the typical flow separation due to strong swirl flow. With a fixed amount of air, the increased amount of water moisture from 0 to 10% by 2% interval shows the decrease of NO concentration and flame temperature at exit are from $973^{\circ}C$ and 139 ppm to $852^{\circ}C$ and 71 ppm. The radiation effects on the generation on NO appears more dominant than swirl strength over the range employed in this study. However, for the strong swirl flow employed in this study, the flow separation cause the relatively high NO concentration observed near exit after peak concentration in the front side of the combustor.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Computational Model for Flow in River Systems Including Storage Pockets with Side Weirs (횡월류형 강변저류지를 포함하는 하천수계에 대한 수리학적 계산모형)

  • Jun, Kyung-Soo;Kim, Jin-Soo;Kim, Won;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.139-151
    • /
    • 2010
  • A quasi-two-dimensional unsteady flow model was developed for simulating the flow in a river system including artificial storage pockets with side weirs. It is a multiply-connected network which combines channels and storage pockets. The channel flow is described by the one-dimensional Saint Venant equations, and the weir overflow flow by the cell continuity and stage-discharge relations. The model was applied to the Imjin river system including six artificial storage pockets. Design flood peak reduction due to storage pockets is not sensitive to the side weir discharge coefficient. Storage pockets downstream are less effective than upstream ones in reducing peak stage as the backwater effect becomes more dominant. Simulated flood control effect is highly sensitive to the roughness coefficient. The uncertainty due to the roughness coefficient increases as the weir crest elevation gets higher. Because the best design alternative varies with the roughness coefficient, proper estimation of it is essential to the design of side weirs. Moreover, uncertainty of the estimation needs to be considered in the design process.