• 제목/요약/키워드: Peak fault current limiting operation

검색결과 9건 처리시간 0.025초

Analysis on Current Limiting Characteristics of Transformer Type SFCL with Additionally Coupled Circuit

  • Lim, Seung-Taek;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.533-539
    • /
    • 2018
  • In this paper, the transformer type superconducting fault current limiter (SFCL) with additionally coupled circuit was suggested and its peak fault current limiting characteristics due to the fault condition to affect the fault current were analyzed through the fault current limiting tests. The suggested transformer type SFCL is basically identical to the previous transformer type SFCL except for the additional coupled circuit. The additional coupled circuit, which consists of the magnetically coupled winding to the primary and the secondary windings together with another superconducting element and is connected in parallel with the secondary winding of the transformer type SFCL, is contributed to the peak fault current limiting operation for the larger transient fault current directly after the fault occurrence. To confirm the fault current limiting operation of the suggested SFCL, the fault current limiting tests of the suggested SFCL were performed and its effective peak fault current limiting characteristics were analyzed through the analysis on the electrical equivalent circuit.

피크전류제한 기능을 갖는 초전도한류기의 전류제한 특성분석 (Analysis on Current Limiting Characteristics of a Superconducting Fault Current Limiter (SFCL) with a Peak Currnt Limiting Function)

  • 한태희;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.47-51
    • /
    • 2011
  • The superconducting fault current limiter (SFCL) with a peak current limiting function according to the initial fault current with the different amplitudes was suggested. The proposed SFCL, which consists of two limiting components, causes only the first superconducting element among two limiting components to be quenched in case that the initial fault current with the lower peak amplitude happens. On the other hand, the initial fault current with the higher peak amplitude makes both the superconducting elements of two limiting components to be quenched, which contributes to the peak current limiting function of the SFCL. To confirm the fault current limiting operation of the proposed SFCL, the short-circuit tests of the SFCL according to the fault angle were carried out and its effective fault current limiting operations could be discussed.

피크전류제한 설정에 따른 피크전류제한 기능을 갖는 자속구속형 초전도한류기의 고장전류제한 특성 분석 (Analysis on Fault Current Limiting Characteristics According to Peak Current Limiting Setting of a Flux-Lock Type SFCL with Peak Current Limiting Function)

  • 고석철
    • 조명전기설비학회논문지
    • /
    • 제26권12호
    • /
    • pp.68-73
    • /
    • 2012
  • In this paper, the fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) with peak current limiting function were analyzed through its short-circuit tests. The setting condition for the peak current limiting operation was derived from its electrical equivalent circuit, which was dependent on the inductance ratio between the third coil and the first coil. Through the analysis on the short-circuit tests for the flux-lock type SFCLs with the different inductance ratio between the third coil and the first coil, the setting value for the peak current limiting operation of the flux-lock type SFCL with peak current limiting function could be confirmed to be adjusted with the variation of the inductance ratio between the third coil and the first coil.

두 개의 자속경로를 갖는 직렬연결형 초전도한류기의 이중 피크전류제한 특성 (Double Peak Current Limiting Properties of Series Connection-Type SFCL with Two Magnetic Paths)

  • 고석철;한태희;임성훈
    • 조명전기설비학회논문지
    • /
    • 제28권7호
    • /
    • pp.62-68
    • /
    • 2014
  • We proposed a series connection-type superconducting fault current limiter(SFCL) using E-I core that can prevent the internal magnetic flux generation of cores during normal operation, and prevent the saturation of cores due to a sudden magnetic flux generation at the initial stage of fault occurrence while limiting the peak current. Through a short-circuit simulation experiment, we analyzed the operating status of the two superconducting elements and limiting characteristics according to the size of the fault current peak before and after the failure. Further, the double peak current limiting characteristics according to the winding directions as well as the current and the voltage of each coil were compared and analyzed.

Analysis on Current Limiting Characteristics According to the Influence of the Magnetic Flux for SFCL with Two Magnetic Paths

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1909-1913
    • /
    • 2014
  • In this study, a superconducting fault current limiter (SFCL) having two magnetic paths was proposed, and its current limiting characteristics were analyzed. For the SFCL to effectively perform the current limiting operation, it must be designed considering the magnetic saturation of the E-I core. Further, the influence of the magnetic flux on its peak current limiting characteristics was investigated. In addition, the magnetic flux curves of the SFCL obtained from the fault current limiting experiments were analyzed, and the subtractive polarity winding case was observed to not only further reduce the saturation potential of the core but also perform the peak current limiting functions well when compared with the additive polarity winding case.

반주기내 한류성능을 위한 진공차단기의 아크소호 (Arc Extinguishing of a Vacuum Interrupter for an HTS First Peak Current Limiter)

  • 김우석;박충렬;현옥배;김혜림;임성우;유승덕;양성은
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.23-26
    • /
    • 2010
  • A double line commutation (DLC) type SFCL with first peak limiting function has been proposed for ideal fault current limiting operation. Very fast switching (commutation) without any arc or high voltage problems for any kind of switching device is needed for the first peak current limiting. We've tried to find suitable conditions for a successful switching of a Vacuum Interrupter (VI) with HTS elements as a Peak Current limiting Resistance (PCR).

자속구속형 전류제한기의 초기 사고전류 제한시점 변화 (Variance of Initial Fault Current Limiting Instant in Flux-lock Type SFCL)

  • 박충렬;임성훈;박형민;최효상;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제18권3호
    • /
    • pp.269-275
    • /
    • 2005
  • A flux lock-type SFCL consists of two coils which are wound in parallel each other through an iron core, and a HTSC thin film connects in series with coil 2. The operation of the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between coil 1, coil 2. When a fault occurs, the fault current in the HTS thin film exceeds the critical current so that resistance is generated in the HTS film, and thereby the fault current is limited by an instant rise in the impedance of the flux-lock type SFCL. We investigated he variances of initial fault current limiting instant according to the ratio of inductance of coil 1 and coil 2 in the flux-lock type SFCL. It was confirmed from experiments that the initial fault current limiting instant in the subtractive polarity and additive polarity windings were faster as the ratio of coil 2' inductance for coil 1's inductance increased. The 1st peak of fault current in case of the subtractive polarity winding was higher as the ratio of coil 2's inductance for coil 1's inductance increased. On the other hand, in case of the additive polarity winding, the 1st peak of fault current was lower.

Current Limiting Characteristics of a Flux-Lock Type SFCL for a Single-Line-to-Ground Fault

  • Oh, Geum-Kon;Jun, Hyung-Seok;Lee, Na-Young;Choi, Hyo-Sang;Nam, Gueng-Hyun
    • 조명전기설비학회논문지
    • /
    • 제20권9호
    • /
    • pp.70-77
    • /
    • 2006
  • We have fabricated an integrated three-phase flux-lock type SFCL, which consists of an YBCO($YB_a2Cu_3O_7$) thin film and a flux-lock reactor wound around an iron core of each phase. In order to apply the SFCL in a real power system, fault analyses for the three-phase system are essential. The short-circuit currents were effectively limited by adjusting the numbers of winding of each secondary coil and their winding directions. The flux flow generated in the iron core cancelled out under the normal operation due to the parallel connection between primary and secondary windings. However, the flux-lock type SFCL with same iron core was operated just after the fault due to the flux generating in the iron core. To analyze the current limiting characteristics, the additive polarity winding was compared with the subtractive one in the flux lock reactor. Whenever a single line-to-ground fault occurred in any phase, the peak value of the line current of the fault phase in the additive polarity winding increased up to about 12.87 times during the first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to about 34.07 times under the same conditions. This is because the current flow between the primary and the secondary windings changed to additive or subtractive status according to the winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to-ground fault

고온초전도 한류기의 전력계통 적용에 관한 연구 (A Study on the Power System Application of High-Tc Superconducting Fault Current Limiter)

  • 배형택;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.115-116
    • /
    • 2006
  • Since the discovery of the high-temperature superconductors, many researches have been performed for the practical applications of superconductivity technologies in various fields. As results, significant progress has been achieved. Especially, Superconducting Fault Current Limiter (SFCL) offers an attractive means to limit fault current in power systems. The SFCLS, in contrast to current limiting reactors or high impedance transformers, are capable of limiting short circuit currents without adding considerable voltage drop and energy loss to power systems during normal operation. Under fault conditions, a resistance is automatically inserted into the power grid to limit the peak short-circuit current by transition from the superconducting state to the normal state, the quench. The advantages, like fail safe operation and quick recovery, make SFCL very attractive, especially for rapidly growing power systems with higher short-circuit capacities. In order to verify the effectiveness of the SFCL, in this paper, the analysis of fault current and voltage stability assessment in a sample distribution system and a transmission system are performed by the PSCAD/EMTDC based simulation method. Through the simulation, the advantage of SFCL application is shown, and the effective parameters of the SFCL are also recommended for both distribution and transmission systems. A resistive type component of SFCL is adopted in the analysis. The simulation results demonstrate not only the effectiveness of the proposed simulation scheme but also SFCL parameter assessment technique.

  • PDF