• 제목/요약/키워드: Peak electric load

검색결과 173건 처리시간 0.027초

제주도 지역별 대용량 태양광발전소들의 여름 피크타임 기여도 연구 (Contribution of Large-Scale PV Plants in the Respective Region of the Jeju Island to Electric Power during Summer Peak Times)

  • ;고석영;사공준;권훈;이개명
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1873-1878
    • /
    • 2017
  • Both the introduction of the Renewable Energy Portfolio Standard (RPS) system into the electric energy market in 2012 and a decrease in the cost of constructing photovoltaic (PV) power plants have been increasing the number of MW PV plants in South Korea. Jeju Island is located at the center of three nations, South Korea, China and Japan, and its provincial government declared in 2012 that the island will be a clean region where greenhouse gases are not emitted by 2030. The Jeju provincial government is now doing its best to install PV plants and wind farms to realize a carbon-free island. In this study we investigated contribution of MW PV plants to the power of the electric grid during summer peak times on Jeju Island. Mt. Halla the highest mountain in South Korea, is located at the center of Jeju Island, and we divided the island into four regions and carried out analyses of a total of 24 PV plants. The average contribution of the PV plants in the respective region to electric power of Jeju Island during summer peak times was investigated and compared with those of the other regions. The best average contribution during the 12.5% maximum load period was obtained from the PV plants in the western region, and the value was 33% during 2015 and 2016.

BESS의 DR(Demand Response) 적용 시 수용가의 투자비 최소화를 위한 적정용량산출방법 (A Study on the Battery Storage Volume Optimization in case of DR Participation for the Minimization of the Customer's Investment Cost)

  • 양승권;김대영
    • 조명전기설비학회논문지
    • /
    • 제27권1호
    • /
    • pp.17-23
    • /
    • 2013
  • The BESS(Battery Energy Storage System) is an useful device for load leveling, but the high cost, installation space and safety issues are the main barriers for supplying it widely. The important factor in supplying BESS to customers successfully is the payback period. As most of the H/W cost factors are uncontrollable, the optimization of storage volume can be useful factor in improving payback period. In order to obtain optimized BESS volume, the load factor, demand ratio, peak shaving ratio, electric rates and benefits from DR participation of customer should be analyzed. In this paper, we could verify the peak cutting capability and cost effectiveness under the some proposed conditions and changing value of PCS and battery based on the customers data after volume optimization process was applied, and we can identified the saturation point of load factor and shortening of customer's payback period.

수용가 수요관리용 전지전력저장시스템의 최적용량 산정방법 (Optimal Capacity Determination Method of Battery Energy Storage System for Demand Management of Electricity Customer)

  • 조경희;김슬기;김응상
    • 전기학회논문지
    • /
    • 제62권1호
    • /
    • pp.21-28
    • /
    • 2013
  • The paper proposes an optimal sizing method of a customer's battery energy storage system (BESS) which aims at managing the electricity demand of the customer to minimize electricity cost under the time of use(TOU) pricing. Peak load limit of the customer and charging and discharging schedules of the BESS are optimized on annual basis to minimize annual electricity cost, which consists of peak load related basic cost and actual usage cost. The optimal scheduling is used to assess the maximum cost savings for all sets of candidate capacities of BESS. An optimal size of BESS is determined from the cost saving curves via capacity of BESS. Case study uses real data from an apartment-type factory customer and shows how the proposed method can be employed to optimally design the size of BESS for customer demand management.

수용가용 직접부하제어장치 설계 (Design of Direct Load Controller for use of Demand Side)

  • 박종찬;김한구;정병환;강병희;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.149-151
    • /
    • 2005
  • Recently, power supply-demand instability due to the dramatic increase in power usage suchas air-conditioning load at summertime has brought forecasts of decrease in power supply capability. Therefore improving the load factor through systematic load management, in other words, Direct Load Control became necessary. Direct Load Control(DLC) system is kind of a load management program for stabilization of electric power supply-demand. It's purpose is limiting the demand of the demand side selected at peak load or other time periods. The paper presented a Design of Direct Load Controller for control the amount of power demand in demand side. The proposed Controller is cheaper and has ability of storing more power data than pre-existing device.

  • PDF

부하구성비를 이용한 부하예측에 관한 연구 - 주거용 부하를 중심으로 한 (A Study the load Forecasting Techniques using load Composition Rates (Residential load))

  • 박준열;임재윤;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.82-85
    • /
    • 1993
  • The load forecasting has been essential in planning and operation of power systems. The load composition rata is also needed to analyze power-systems - load flow calculation and system stability. This paper proposes the monthly peak load forecasting methods for load groups in residential class using load composition rate and electric consumption characteristics. The proposed methods were applied to a real-scale power system and the effectiveness was turned out.

  • PDF

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석 (A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method)

  • 김동준;강병하;장영수
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.

수용가용 직접부하제어시스템의 구성 및 운영 (Composition and Operation of Direct Load Control(DLC) System for use of Demand Side)

  • 박종찬;최문규;이용균;김선자;정병환;최규하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1260-1262
    • /
    • 2004
  • Direct Load Control(DLC) system is a load management program for stablization of electric power supply-demand. It is a series of acts limiting the demand of selected demand side at peak load or other time periods. Recently, power supply-demand instability due to dramatic increase in power usage such as summertime air-conditioning load has brought forecasts of decrease in power supply capability. Therefore heightening the load factor through systematic load management, in other words, Direct Load Control became necessary. By examining the composition and operation of the DLC system, this paper provides conceptional understanding of the DLC system and help in system research.

  • PDF

초전도 에너지 저장 기술에 대한 고찰 (A Consideration on the Superconductivity Energy Storage Technology)

  • 고윤석
    • 한국전자통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.691-698
    • /
    • 2015
  • 최근, 전력산업에서는 지구 온난화에 대비하여 에너지 이용 효율 극대화하기 위한 방안으로 초전도 에너지 저장 장치에 큰 관심을 가지고 있다. 초전도 에너지 저장장치는 비 첨두시에 대량의 전기에너지를 손실 없이 자계 또는 운동 에너지의 형태로 저장하였다가 첨두시에 이를 다시 전기에너지로 변환하여 사용함으로서 피크부하의 균등화 및 순간정전 보상을 실현, 전기 에너지 이용 효율의 극대화를 기할 수 있다. 따라서 본 연구에서는 초전도 에너지 저장기술에 대한 개념, 연구개발 현황 및 그 적용 사례 등을 조사, 분석하여, 전력계통 적용 기반기술을 확립하고자 한다.