• Title/Summary/Keyword: Peak Water Quality Monitoring

Search Result 25, Processing Time 0.038 seconds

A study on the Management of Non-point Source Using Peak Water Quality Concentration (첨두수질농도를 이용한 비점오염원 관리방안 연구)

  • Kal, Byungseok;Park, Jaebeom;Kwon, Heongak;Im, Taehyo;Lee, Jiho
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.287-295
    • /
    • 2017
  • In this study, rainfall runoff characteristics according to peak concentration were analyzed using the water quality and flow data in the Geumho river, and the direction of nonpoint source management such as monitoring and management period by pollution source was derived. Peak Water Quality Concentration is the concept that utilizes the extreme value as the concentration of non-point pollution control standard with the highest water quality in the rainwater runoff. Using this method, the evaluation factors such as cumulative precipitation(total precipitation), peak water quality concentration, cumulative precipitation up to peak water quality concentration, time to peak water quality concentration, and EMC to peak water quality concentration were examined and long- Rainfall runoff characteristics of nonpoint sources were analyzed. The results of the analysis suggested proper monitoring and management method to manage nonpoint source.

Management for Improvement in Water Quality and Change of Fish Assemblage in Urban Dong Stream with Input of Seawater (해수 투입에 따른 동천 주변 환경 개선 평가를 위한 어류상 변화 및 관리 방안)

  • Kwak, Seok-Nam;Kim, Dong-Myung;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.1
    • /
    • pp.253-261
    • /
    • 2015
  • The chemical water quality and fish assemblage of Dong Stream to assessment of environmental improvement after discharge seawater were investigated from July to December 2013. BOD and DO were significantly different between before and after discharge seawater, while pH and SS did not significant. A total of 11 fish species, 218 individuals and 10,525.1g were collected. Dominant fish species were Mugil cephalus, Konosirus punctatus, Acanthogobius flavimanus and Leiognathus nuchalis which account for 77.5% of total individuals collected, and they were estuarian species. Peak number of species and individuals, and biomass occurred in September, whereas diversity index were highest in November. The water ecosystem of Dong Stream have been changed estuarian environment. As a result of stream assessment on water quality and ecosystem, water quality have been improved as 'III' grade. These results suggested that stream restoration policies such as drain pipes maintenance, management of pollution sources and riverbed dredging to improve environment and recover habitate of Dong Stream were need for set up and establishment of regular monitoring system.

Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring

  • Jeon, Jechan;Choi, Hyeseon;Shin, Dongseok;Kim, Lee-hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In Korea, nonpoint pollutants have a significant effect on rivers' water quality, and they are discharged in very different ways depending on rainfall events. Therefore, preparing an optimal countermeasure against nonpoint pollutants requires much monitoring. The present study was conducted to help prepare a method for installing an automatic nonpoint pollutant measurement system for the cost-effective monitoring of the effect of nonpoint pollutants on rivers. In the present study, monitoring was performed at six sites of a river passing through an urban area with a basin area of $454.3km^2$. The results showed that monitoring could be performed for a relatively long time interval in the upstream and downstream regions, which are mainly comprised of forests, regardless of the rainfall amount. On the contrary, in the urban region, the monitoring had to be performed at a relatively short time interval each time when the rainfall intensity changed. This was because the flow rate was significantly dependent on the rainfall's intensity. The appropriate sites for installing an automatic measurement system were found to be a site before entering the urban region, a site after passing through the urban region, and the end of a river where the effects of nonpoint pollutant sources can be well-decided. The analysis also showed that the monitoring time should be longer for the rainfall events of a higher rainfall class and for the sites closer to the river end. This is because the rainfall runoff has a longer effect on the river. However, the effect of nonpoint pollutant sources was not significantly different between the upstream and the downstream in the cases of rainfall events over 100 mm.

A Study on Evaluation of Water Quality Measurement Network in the Nakdong River Tributary Using TOPSIS (TOPTSIS를 이용한 낙동강 지류에서의 수질측정망 평가 연구)

  • Kal, Byungseok;Park, Jaebeom;Kim, Seongmin;Shim, Kyuhyun;Shin, Sangmin;Choi, Suyeon
    • Journal of Wetlands Research
    • /
    • v.24 no.1
    • /
    • pp.44-51
    • /
    • 2022
  • In this study, TOPSIS(Techniques for Order Performance by Similarity to Ieal Solution) was used to evaluate the installation points of water quality monitoring networks in 34 streams of the Nakdong River watershed. The Nakdong River System has been measuring water quality and flow in 195 local streams since 2011. In particular, the 34 key management points are areas with many pollutants and poor water quality, requiring continuous water quality management. For the selection of points requiring management, 10 indicators were selected for evaluation, and the selected indicators were standardized and weighted using the entropy method. As a result of weight calculation, the presence or absence of a nearby measuring network received the greatest weight, and the average water quality and presence of an industrial complex obtained the highest weight. The evaluated data are judged to be the research results necessary for the establishment of a new water quality measurement network in the Nakdong River system and continuous water quality management in tributaries.

Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (I))

  • Lee, Chanjoo;Kim, Dong Gu;Ji, Un;Kim, Jisung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Naeseong Stream is a sand-bed river that flows through the northern area of Gyeongbuk province. It is characterized by dynamic sandy bedforms developed in response to the seasonal hydrological fluctuation and by its unique riverine landscape called "white river." However, changes including construction of Yeongju Dam from 2010 and the extensive vegetation establishment around 2015 occurred along the Naeseong Stream. This paper aims to analyze climate, hydrology, and water quality as factors and to examine the possibility of channel changes accordingly. The second least precipitation during the last 60 years happened in 2015, which led to the lowest peak discharge in 50 years. The sediment characteristics of Naeseong Stream were not significantly different along the upstream and downstream reaches, but it was confirmed that annual minimum water level of the stream decreased continuously regardless of the dam construction. This suggests that intermittent drought and change in water quality are likely to provide favorable conditions for riparian vegetation establishment and the resulting physical changes have affected riverbed degradation. Therefore, it is necessary to conduct diversified monitoring in connection with river vegetation change in order to analyze the causes of river changes.

Characteristics of Agricultural Non-point Source Pollutants by Rainfall Events in Rural Watersheds (농촌유역의 강우사상별 농업 비점원오염물질 유출특성)

  • Kim, Jinho;Han, Kukheon;Lee, Jongsik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2008
  • This study was conducted to know the characteristics of agricultural non-point source pollutants runoff by rainfall events at the upper catchment of Goseong reservoir in Gonjy city, Chungnam Province. For this study, the monitoring sites of the research catchment were set nineteen during the research period (between June 2005 and October 2006). Average runoff coefficient were observed 0.51 in 2005, 0.71 in 2006, respectively. The correlation coefficient (r) between the rainfall and peak-flow was investigated 0.787. By rainfall events, the water quality of the sites were shown like this : BOD 0.555~9.60 mg/L, T-N 0.01~13.50 mg/L, T-P 0.002~2.952 mg/L, and SS N.D~820.0 mg/L. The strong rainfall intensity was the most important factor of the soil erosion. The gabs of the arithmetic mean concentrations and the flow weighted mean concentrations were observed as the followings : BOD 0.0~29.2%, T-N 0.1~11.4%, T-P 0.4~95.2%, and SS 1.7~57.0% in 2005, and BOD 1.0~11.9%, T-N 0.7~7.3%, T-P 9.9~36.5%, and SS 6.6~36.5% in 2006, respectively. The BOD pollution load was 2,117 kg (36% of the total BOD loading of survey periods) while, T-N was 3,209.0 kg (27.9% of the total T-N loading of survey periods), T-P was 136.4 kg (37.4% of the total T-P loading of survey periods) and SS was 72,733.8 kg (51.8% of the total SS loading of survey periods) in the year 2005. In case of 2006, BOD load was 1,321.7, T-N was 2,845.8, T-P was 42.9, and SS was 16,275.8 kg, respectively.

EFFCTS OF TILLAGE SYSTEMS ON THE QUALITY OF RUNOFF FROM SLUDGE-AMENDED SOILS

  • Mostaghimi, Saied;Bruggeman, Adriana C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.984-993
    • /
    • 1993
  • land application of sewage sludge requires careful monitoring because of its potential for contamination of surface water and groundwater. A rainfall simulator was used to investigated the effects of freshly applied sludge on runoff of sediment and nutrients from agricultural crop lands. Rain was applied to 16 experimental field plots. A three run sequence was used to simulate different initial moisture conditions. Runoff, sediment and nutrient losses were monitored at the base of each plot during the simulated rainfall events. Sludge was surface applied and incorporated at conventionally -tilled plots and surface applied at no-till plots, at rates of 0, 75, 150 kg-N/ha. No-till practices greatly reduced runoff, sediment , and nutrient losses form the sludge treated plots, relative to the conventional tillage practices. Incorporation of the sludge was effective in reducing nutrient yields at the conventionally-tilled plots. This effect was more pronounced during the third rain torm, with wet initial conditions. Peak loadings of nutrients appeared during the rainstorm with wet initial conditions.

  • PDF

The Policy Review and Water Quality Characteristics of National Fishing Harbors and Designated Ports in East Coast of Korea (동해안 국가어항과 지정항만의 수질특성 및 정책적 고찰)

  • Lee, Dae-In;Kim, Gui-Young;Moon, Ju-Hoon;Eom, Ki-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.213-223
    • /
    • 2011
  • The status and changes of water quality of national fishing harbors and designated ports in East Coast of Korea were analyzed to support establishment effective water environmental management. COD (Chemical Oxygen Demand) concentration was satisfied to designated water quality criteria in most areas, but TN (Total Nitrogen) and TP (Total Phosphorus) exceeded the criteria frequently. Also, peak concentration was summer in COD and SS (Suspended Solid), but winter in TP. Eutrophication index of Ganggu and Pohang (old) area were the highest. Pollution index by function of COD, TN, and TP of Ganggu, Pohang, Jumunjin, and Guryongpo was high with gradual increasing recently, on the contrary, that of Samcheok, Imwon, and Chuksan was decreased. Pollution index involving multi-indictors relation to organics and inorganics was necessary for water quality assessment. Designated water quality criteria needed to be improved because the criteria of Jukbyun and Chuksan was applied more strictly compared to the other regions although without difference of environmental characteristics. Furthermore, the criteria notified lately needed to be related to management pollutants from land-based sources. The continuous diagnosis and monitoring on sediment quality within the study area were necessary for prevention of water pollution and eco-friendly disposal of dredged sediment. Especially, monitoring of Designated Ports was implemented partially, however monitoring ratio of National Fishing Har-bors was 7% to whole part. Therefore, systematic and integrated environmental monitoring for ports and harbors with charge of national management was reestablished by strengthening and securing a legal basis.

Size Distribution Characteristics of Particulate Mass and Ion Components at Gosan, Korea from 2002 to 2003

  • Han J.S.;Moon K.J.;Lee S.J.;Kim J.E.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.23-35
    • /
    • 2005
  • Size distribution of particulate water-soluble ion components was measured at Gosan, Korea using a micro-orifice uniform deposit impactor (MOUDI). Sulfate, ammonium, and nitrate showed peaks in three size ranges; Sulfate and ammonium were of dominant species measured in the fine mode ($D_{p} < 1.8 {\mu}m$). One peak was observed in the condensation mode ($0.218\sim0.532{\mu}m$), and the other peak was obtained in the droplet mode ($0.532\sim1.8{\mu}m$). Considering the fact that the equivalent ratios of ammonium to sulfate ranged from 0.5 to 1.0 in these size ranges, it is inferred that they formed sufficiently neutralized compounds such as ($NH_{4})_{2}SO_{4} and (NH_{4})_{3}H(SO_{4})_{2}$ during the long-range transport of anthropogenic pollutants. On the other hand, nitrate was distributed mainly in the coarse mode ($3.1\sim6.2{\mu}m$) combined with soil and sea salt. Two sets of MOUDI samples were collected in each season. One sample was collected when the concentrations of criteria air pollutants were relatively high, but the other represented relatively clean air quality. The concentrations of sulfate and ammonium particles in droplet mode were the highest in winter and the lowest in summer. When the air quality was bad, the increase of nitrate was observed in the condensation mode ($0.218\sim0.282{\mu}m$). It thus suggests that the nitrate particles were produced through gas phase reaction of nitric acid with ammonia. Chloride depletion was remarkably high in summer due to the high temperature and relative humidity.

Application of Water Model for the Evaluation of Pesticide Exposure (농약의 노출 평가를 위한 수계예측모형의 적용)

  • Son, Kyeong-Ae;Kim, Chan-Sub;Gil, Geun-Hwan;Kim, Taek-Kyum;Kwon, Hyeyoung;Kim, Jinbae;Im, Geon-Jae;Ihm, Yang-Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.236-246
    • /
    • 2014
  • Pesticide is used to protect the crops, but also become a cause of polluting the environment. Perform a risk assessment using physical and chemical properties, environmental fate and toxicity data in order to determine the pesticide registration. The aquatic model estimates pesticide concentrations in water bodies that result from pesticide applications to rice paddies and apple orchard. The used models are the PRZM, EXAMS and AGRO shell (PA5), Rice Water Quality Model (RICEWQ) and Screening Concentration In GROund Water (SCI-GROW). The residual concentration of water body was estimated using meteorological data, crop calendar and soil series of Korea. The chosen pesticides were butachlor, carbofuran, iprobenfos and tebuconazole. It has shown the potential that the RICEWQ is possible to predict residue level in water of butachlor and iprobenfos, because the maximum value in water monitoring data is lower than the peak concentration of the model, and the minimum value is lower than the average annual concentration of the model. But RICEWQ was insufficient to predict exposure concentrations in ground water. The estimated exposure concentrations of carbofuran in ground water is very higher than in surface water because of its low soil adsorption coefficient. Although tebuconazole were not detected in the water monitoring that means very low concentration, it is possible that the PA5 can be used to predict residue level in water.