• 제목/요약/키워드: Peak Pressure

검색결과 1,458건 처리시간 0.025초

관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구 (The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate)

  • 이동훈;김희동;강성황
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

지진하중을 받는 정사각형 강재 액체저장탱크의 벽면 압력 응답 해석 (Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank)

  • 윤장혁;강태원;양현익;전종수
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.261-269
    • /
    • 2018
  • This study examines earthquake-induced sloshing effects on liquid storage tanks using computation fluid dynamics. To achieve this goal, this study selects an existing square steel tank tested by Seismic Simulation Test Center at Pusan National University as a case study. The model validation was firstly performed through the comparison of shaking table test data and simulated results for the water tank subjected to a harmonic excitation. For a realistic estimation of the wall pressure response of the water tank, three recorded earthquakes with similar peak ground acceleration are applied:1940 El Centro earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Wall pressures monitored during the dynamic analyses are examined and compared for different earthquake motions and monitoring points, using power spectrum density. Finally, the maximum dynamic pressure for three earthquakes is compared with the design pressure calculated from a seismic design code. Results indicated that the maximum pressure from the El Centro earthquake exceeds the design pressure although its peak ground acceleration is less than 0.4 g, which is the design acceleration. On the other hand, the maximum pressure due to two Korean earthquakes does not reach the design pressure. Thus, engineers should not consider only the peak ground acceleration when determining the design pressure of water tanks.

20대 여성의 신발종류에 따른 족저압 영역별 비교 연구 (A comparison study for mask plantar pressure measures to the difference of shoes in 20 female)

  • 김용재;지진구;김정태;홍준희;이중숙;이훈식;박승범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

Wind induced internal pressure overshoot in buildings with opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • 제16권1호
    • /
    • pp.1-23
    • /
    • 2013
  • The wind-induced transient response of internal pressure following the creation of a sudden dominant opening during the occurrence of high external pressure, in low-rise residential and industrial buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response with the computational fluid dynamics predictions. The effect of a sudden i.e., "instantaneously created" windward opening in the Texas Technical University (TTU) test building envelope was studied for two different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that for cases where the openings are created in close temporal proximity to the peak pressure, the transient overshoot values of internal pressure could be higher than the peak values of internal pressure in the pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on the level of overshoot was also investigated for the TTU building for the two different envelope characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial buildings). While the factors appear slightly on the high side due to conservative assumptions made in the analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is warranted.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

카페인 중독이 20대 성인 여성의 심장호흡기계능력에 미치는 영향 (The Effect of Twenties Female Caffeine Addiction on Cardiorespiratory Capacity)

  • 윤영제
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권8호
    • /
    • pp.197-202
    • /
    • 2020
  • 본 연구에서는 20대 여성의 카페인 중독이 심장호흡기계 능력에 미치는 영향을 조사하였다. 본 연구의 대상자는 G 광역시 소재의 H 대학교 여학생 35명을 카페인 중독자(n=17)과 카페인 비중독자(n=18)가 참여하였다. 심장능력을 평가하기 위해 사이클 에르고미터를 사용하여 최대산소섭취량, 최대에너지소비량, METs를 측정하였으며, 호흡기계 능력은 파워브리드 K5를 사용하여 최대들숨압, 평균들숨압, 최대들숨유속, 평균들숨유속, 최대들숨량, 평균들숨량을 측정하였다. 본 연구의 결과는 심장능력에서 카페인 중독군은 카페인 비중독군에 비해 최대산소섭취량과 METs에서 통계학적으로 유의한 감소를 보였으며, 호흡기계 능력에서는 카페인 중독군이 비중독군에 비해 최대들숨압, 평균들숨압, 최대들숨유속, 평균들숨유속에서 통계학적으로 유의한 감소를 보였다. 본 연구의 결과를 종합하면, 카페인 중독은 20대 여성의 심장호흡기계 능력의 감소를 보였다. 따라서 본 연구의 결과는 20대 여성의 카페인 중독예방을 위한 기초자료로 활용할 수 있을 것이다.

출혈을 일으킨 흰쥐에서의 PTT와 수축기 혈압 비교 (The Comparison of PTT and Systolic Blood Pressure in a hemorrhaged Rat)

  • 심영우;이주형;양동인;김덕원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.138-140
    • /
    • 2009
  • Hemorrhage shock occupies high rate in trauma patient's mortality and blood pressure is the variance that judges early diagnosis and the effect of remedy. Systolic blood pressure is related to pulse transit time(PTT). PTT means the time that is required to flow from the heart to peripheral artery. PTT is influenced from the length, cross section and stiffness of the blood vessels. It is hard to evaluate the correlation between systolic blood pressure and PTT because they are variable in human body. In this paper, we evaluated the correlation between the systolic blood pressure and PTT in normal and hemorrhage states using standardized rat. PTT is defined as the time differences between the R peak and the peak of pulse wave. The analyzed time differences of ECG and blood pressure are analyzed every 5minutes for 30 seconds when there is before and after bleeding. Before bleeding, systolic blood pressure and PTT are steadily preserved but when the bleeding comes started, systolic blood pressure is declined. However PTT was increased and decreased. Under the circumstance that the standardized rat is controlled by age, the length of the blood vessels, and any disease, it shows that PTT measurement using systolic blood pressure of bleeding is impossible.

  • PDF

비침습적 뇌내압 측정 시스템의 개발을 위한 청각유발전위와 경막혈종간의 상관관계 분석에 관한 연구 (A Correlational Study between Auditory Evoked Potential and Subdural Hematoma for the Diveloprnent of a Noninvasive ICP Monitoring System)

  • 임재중
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권2호
    • /
    • pp.167-174
    • /
    • 1995
  • Development of a noninvasive intensive care system calls for the use of evoked potentials (EPs) as a means of diagnosing traumatic head-injured patients. The experiment entails surgically placing two subarachnoid bolts and a subdural balloon through the skull to simulate a subdural hematoma. Using various levels of intracranial pressure (ICP) and/or different sizes of balloons, auditory evoked potentials (AEPs) were recorded from a rabbit. Six positive peak latencies ($P_1 - P_6$) and five negative peak latencies ($N_l- N_5$) were extracted from an averaged AEP waveform. Multiple regression analyses were performed for determining. a relationship between the ICP and AEP peak latencies. The results indicate that a major correlation of ch, mges on AEP peak latencies is due to mechanical forces of a mass (inflated balloon simulating a hematoma) in the distortion of the brain matter rather than increased ICP itself.

  • PDF

가스발생기의 점화 초기압력 저감화 연구 (A Study for Reduction of Ignition Peak Pressure of Gas Generator)

  • 차홍석;오석진;이응조
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.138-141
    • /
    • 2010
  • 유도탄 사출장치에 적용되는 가스발생기의 점화 초기압력 저감화를 위한 연구를 수행하였다. 점화장치는 추진제의 점화를 위한 에너지 방출장치로서 다발 형태의 3열형 추진제 그레인을 연소 불안정 없이 동시 점화시키는 것을 목표로 한다. 점화성이 좋지 않은 복기형 추진제를 적용하여야 하는 가스발생기의 경우 사출속도와 가속도 조건을 충족하기 위해서는 추진제의 신속한 점화와 점화초기의 연소압력 저감화가 필수적이다. MTV 점화제의 연소 특성을 활용한 점화기 설계를 통하여 모든 개발 요구 성능을 만족할 수 있었다.

  • PDF

Limiting conditions prediction using machine learning for loss of condenser vacuum event

  • Dong-Hun Shin;Moon-Ghu Park;Hae-Yong Jeong;Jae-Yong Lee;Jung-Uk Sohn;Do-Yeon Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4607-4616
    • /
    • 2023
  • We implement machine learning regression models to predict peak pressures of primary and secondary systems, a major safety concern in Loss Of Condenser Vacuum (LOCV) accident. We selected the Multi-dimensional Analysis of Reactor Safety-KINS standard (MARS-KS) code to analyze the LOCV accident, and the reference plant is the Korean Optimized Power Reactor 1000MWe (OPR1000). eXtreme Gradient Boosting (XGBoost) is selected as a machine learning tool. The MARS-KS code is used to generate LOCV accident data and the data is applied to train the machine learning model. Hyperparameter optimization is performed using a simulated annealing. The randomly generated combination of initial conditions within the operating range is put into the input of the XGBoost model to predict the peak pressure. These initial conditions that cause peak pressure with MARS-KS generate the results. After such a process, the error between the predicted value and the code output is calculated. Uncertainty about the machine learning model is also calculated to verify the model accuracy. The machine learning model presented in this paper successfully identifies a combination of initial conditions that produce a more conservative peak pressure than the values calculated with existing methodologies.