• Title/Summary/Keyword: Peak Particle Velocity

Search Result 87, Processing Time 0.02 seconds

Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves

  • Mazloom, Moosa;Pourhaji, Pardis;Shahveisi, Masoud;Jafari, Seyed Hassan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.83-97
    • /
    • 2019
  • In this research, the vulnerability of some reinforced concrete frames with different stories are studied based on the Park-Ang Damage Index. The damages of the frames are investigated under various earthquakes with nonlinear dynamic analysis in IDARC software. By examining the most important characteristics of earthquake parameters, the damage index and vulnerability of these frames are investigated in this software. The intensity of Erias, velocity spectral intensity (VSI) and peak ground velocity (PGV) had the highest correlation, and root mean square of displacement ($D_{rms}$) had the lowest correlation coefficient among the parameters. Then, the particle swarm optimization (PSO) algorithm was used, and the sinusoidal waves were equivalent to the used earthquakes according to the most influential parameters above. The damage index equivalent to these waves is estimated using nonlinear dynamics analysis. The comparison between the damages caused by earthquakes and equivalent sinusoidal waves is done too. The generations of sinusoidal waves equivalent to different earthquakes are generalized in some reinforced concrete frames. The equivalent sinusoidal wave method was exact enough because the greatest difference between the results of the main and artificial accelerator damage index was about 5 percent. Also sinusoidal waves were more consistent with the damage indices of the structures compared to the earthquake parameters.

Investigation on the propagation mechanism of explosion stress wave in underground mining

  • Wang, Jiachen;Liu, Fei;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.295-305
    • /
    • 2019
  • The bedding plane has a significant influence on the effect of blasting fragmentation and the overall performance of underground mining. This paper explores the effects of fragmentation of the bedding plane and different angles by using the numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include a dynamic compressive and tensile failure which is applied to simulate the fractures generated by the explosion. Firstly, the cracks propagation with the non-bedding plane in the coal with two boreholes detonated simultaneously is calculated and the particle velocity and maximum principal stress at different points from the borehole are also discussed. Secondly, different delay times between the two boreholes are calculated to explore its effects on the propagation of the fractures. The results indicate that the coal around the right borehole is broken more fully and the range of the cracks propagation expanded with the delay time increases. The peak particle velocity decreases first and then increases with the distance from the right borehole increasing. Thirdly, different angles between the bedding plane and the centerline of the two boreholes and the transmission coefficient of stress wave at a bedding plane are considered. The results indicated that with the angles increase, the number of the fractures decreases while the transmission coefficient increases.

The effect of blast-induced vibration on the stability of underground water-sealed gas storage caverns

  • Zhou, Yuchun;Wu, Li;Li, Jialong;Yuan, Qing
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.326-334
    • /
    • 2018
  • Underground water-sealed gas storage caverns have become the primary method for strategic storage of LPG. Previous studies of excavation blasting effects on large-scale underground water-sealed gas storage caverns are rare at home and abroad. In this paper, the blasting excavation for underground water-sealed propane storage caverns in Yantai was introduced and field tests of blasting vibration were carried out. Field test data showed that the horizontal radial velocity had a major controlling effect in the blasting vibration and frequencies would not cause the vibration velocity concentration effects. In terms of the influence of blasting vibration on adjacent caverns, the dynamic finite element model in LS-DYNA soft was established, whose reliability was verified by field test data. The numerical results indicated the near-blasting side was primary zone for the structural failure and tensile failure tended to occur in the middle of the curved wall on the near-blasting side. Meanwhile, the safety criterions for adjacent caverns based on stress wave theory and according to statistic relationship between peak effective tensile stress and peak particle velocities were obtained, respectively. Finally, with Safety Regulations for Blasting in China (GB6722-2014) taken into account, a final safety criterion was proposed.

Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring

  • Li, Ao;Fang, Qian;Zhang, Dingli;Luo, Jiwei;Hong, Xuefei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.561-569
    • /
    • 2018
  • Ground vibration is one of the most undesirable effects induced by blast operation in mountain tunnels, which could cause negative impacts on the residents living nearby and adjacent structures. The ground vibration effects can be well represented by peak particle velocity (PPV) and corner frequency ($f_c$) on the ground. In this research, the PPV and the corner frequency of the mountain surface above the large-span tunnel of the new Badaling tunnel are observed by using the microseismic monitoring technique. A total of 53 sets of monitoring results caused by the blast inside tunnel are recorded. It is found that the measured values of PPV are lower than the allowable value. The measured values of corner frequency are greater than the natural frequencies of the Great Wall, which will not produce resonant vibration of the Great Wall. The vibration effects of associated parameters on the PPV and corner frequency which include blast charge, rock mass condition, and distance from the blast point to mountain surface, are studied by regression analysis. Empirical formulas are proposed to predict the PPV and the corner frequency of the Great Wall and surface structures due to blast, which can be used to determine the suitable blast charge inside the tunnel.

Damage Contribution Rate Analysis by Accidental Tunnel Explosion at a Multi-layered Room and Pillar Mine (우발적 갱도폭발에 따른 다층 주방식 채광광산 구조요인별 피해 기여도 분석)

  • Ko, Young-Hun;Yang, Hyung-Sik;Kim, Seung-Jun
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, parametric studies are conducted to evaluate the contribute effect of multi layered room and pillar mine structures by underground accidental explosions. Influence of PPV(Peak Particle Velocity) obtained from large explosion at a multi layered room and pillar mine was numerically simulated by using AUTODYN. Parameters for contribution rate Analysis was analyzed by the robust design method. Orthogonal array is $L_9(3^4)$, which was adopted in this study, the parameters were pillar height, pillar width, mine span and sill pillar of 3 levels. Results of analysis showed that bottom mine of vertical direction from explosion point are most affected by pillar height, followed by sill pillar thickness, mine span and pillar width. Parameters affecting adjacent mine of horizontal direction from explosion are in the order of pillar width, mine span, pillar height and sill pillar thickness.

Study on Establishing a Blast Guideline for Securing an Underground Crusher Room from Ground Vibrations (지하 조쇄실의 진동 안정성 확보를 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Kim, Hyun-Woo;Kang, Myoung-Soo
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.15-24
    • /
    • 2015
  • In general, blast vibrations could make underground cavern unstable by causing relative movements between the surrounding rock blocks that are divided by discontinuities such as joints and faults around the cavern. In the study, a blast guideline was established to obtain the stability of a large-scale cavern for underground crusher room in an open pit limestone mine in Korea. The guideline was suggested in the form of a standard calculation method of the maximum charge per delay for a safe blast. The allowable level of peak particle velocity for the cavern was determined based on the result of a numerical analysis using FLAC2D. The ground vibration data required for the study was obtained from field measurements.

Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete (인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 임한욱;정동호;이상은
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF

Experimental Study on Turbulent Characteristics of Swirling Flow in 90$^{\circ}$ Degree Circular Tube by Using a PIV Technique (PIV기법을 이용한 원헝단면을 갖는 90$^{\circ}$ 곡관내의 선회유동의 난류특성에 관한 실험적 연구)

  • Chang Tae-Hyun;Lee Hae Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.38-46
    • /
    • 2003
  • An experimental investigation was performed to study the turbulent characteristics of swirling flow a 90$^{\circ}C$ circular tube for Re = 10,000, 15,000 and 20,000. 2D-PIV(Particle Image Velocimetry)technique was employed to measure the fluctuation velocity field. The results include spatial distributions of mean velocity vectors, turbulence intensity and turbulence kinetic energy. The axial and radial turbulence intensities, and kinetic energy profiles show double-peak structures in the inlet region of the 90 degree bend and the profiles are disappeared along the test tube with decaying the swirl intensity.

  • PDF

A Case Study on the Application of Vibration Level Units in the Construction Phase (시공단계의 진동레벨 단위적용에 관한 사례 연구)

  • Choi, Hyung-Bin;Kim, Dong-Yeon
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 2012
  • Ground vibration induced by a bench blasting in the construction site should cause the damage to the structure and indirect damage to a human body, and the vibration level is most practical descriptor for regulating the damage to human body and peak particle velocity is the descriptor for direct damage assesment of the structure. Meantime, the vibration level has not been considered for the blasting design but this study is the case that apply not only peak particle velocity but also vibration level on the blasting design. Also, we strongly believe that this study will be helpful for the management in the blasting site which some civil appeal is concerned. Total 232 measurements of both ppv and vibration level was used to estimate the scale distance. When the regulating threshold was ppv 0.3 cm/s and vibration level 75 decibel, the charge per delay to be estimated with vibration level could be recommended by 1.2~1.4 times than it of ppv. So, it is proven that considering vibration level on the blasting design is reasonable for not only prevention of the civil appeals but also effective blasting. Again, the blasting design which follows the law, "Noise and Vibration Control Act" can actually serve good condition to carry much more economical and effective blasting. The instruments used for this study are the SV-1 model, as first instrument in korea which can measure vibration velocity and vibration level at the same time.

Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles (마그네슘합금의 조성비율에 따른 폭발 및 화염전파 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2012
  • The aim of this study is to evaluate the characteristics of explosion and flame velocity that can be utilized to factories where Mg-Al alloy metal powders are handled in the form of raw materials, products or by-product for similar dust explosion prevention and mitigation. Because the strength of the blast pressure is the result due to flame propagation, flame velocity in dust explosion can be utilized as a valuable information for damage prediction. An experimental investigation was carried out on the influences of content ratio of Mg-Al alloy (mean particle size distribution of 151 to 161 ${\mu}m$). And a model of flame propagation velocity based on the time to peak pressure and flame arrival time in dust explosion pressure, assuming the constant burning velocity, leads to a representation of flame velocity during dust explosion. As the results, the maximum flame velocity of Mg-Al(60:40 wt%), Mg-Al(50:50 wt%) and Mg-Al(40:60 wt%) was estimated 15.5, 18 and 15.2 m/s respectively, and also tend to change with content ratio of Mg-Al.