• Title/Summary/Keyword: Pea

Search Result 377, Processing Time 0.047 seconds

Production of a Transgenic Enriched in Pig Overexpressing Phosphoprotein Astrocytes 15 (PEA 15) (Phosphoprotein Enriched in Astrocytes 15 (PEA15)가 과발현하는 형질전환 돼지의 생산)

  • Lee, Hwi-Cheul;Kim, Hyun-Mi;Lee, Seung-Hoon;Oh, Keon-Bong;Chung, Hak-Jae;Yang, Byong-Chul;Kim, Kyung-Woon;Lee, Poong-Yeon;Park, Jin-Ki;Chang, Won-Kyong
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.239-245
    • /
    • 2011
  • The overexpression of Phosphoprotein Enriched in Astrocytes (PEA15) gene is commonly found in human diabetic patients. The overexpression of this gene in skeletal muscle and fat tissues have been reported to cause insulin resistance, thereby impairing insulin stimulated glucose uptake. We introduced a gene of mouse PEA15 (mPEA15) and enhanced green fluorescent protein (EGFP) into fertilized one cell pig zygotes using microinjection, and produced a piglet that showed overexpression of mPEA15 in the muscle tissues and expression of EGFP in the ear tissues and hooves. RT-PCR RFLP, southern blot and FISH analysis showed that the tissues carried the transgene. Real-time RT-PCR and western blots demonstrated that PEA15 gene was overexpressed in the various tissues and muscle tissues, respectively. These fads suggest that expression vector system is normally expressed in the transgenic (TG) pigs. To use as animal diseases model for type 2 diabetes, further study is necessary to confirm whether diabetes occur in these TG pigs, especially insulin resistance.

Apoptotic effect of Pseudomonas aeruginosa exotoxin A in human tongue squamous cell carcinoma(SCC) 25 cells (Pseudomonas aeruginosa exotoxin A(PEA)가 사람혀 편평암종세포에서 나타나는 세포자멸사 작용)

  • Choi, Byul Bo-Ra;Kim, Gyoo-Cheon
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.4
    • /
    • pp.601-608
    • /
    • 2014
  • Objectives : The purpose of the study is to examine the apoptotic effects of Pseudomonas aeruginosa exotoxin A(PEA) in squamous cell carcinoma(SCC) 25 cells. Methods : Cell growth reduction and apoptosis induced by PEA were confirmed by WST-1 assay, Hoechst 33258 staining, flow cytometry analysis, and Western blot assay. Results : The PEA treatment decreased the cell viability in a dose and time dependent manner: control; $100{\pm}0^e$(p<0.01), 0.1875 nM; $87{\pm}4.36^d$(p<0.01), 0.375 nM; $82{\pm}0.58^d$(p<0.01), 0.75 nM; $72{\pm}1.67^c$(p<0.01), 1.5 nM; $51{\pm}1.53^{bc}$(p<0.01), 7.5 nM; $31{\pm}1.20^{ab}$(p<0.01), 15 nM; $26{\pm}0.67^a$(p<0.01), control; $100{\pm}0^a$(p<0.05), 24 h; $51{\pm}1.53^b$(p<0.05), 48 h; $16{\pm}0.5^c$(p<0.05), 72 h; $12{\pm}1.67^d$%(p<0.05). The PEA was observed on SCC 25 cells with the half maximal inhibitory concentration(IC50) value of 1.5 nM at 24 hours. The PEA treated SCC 25 cells demonstrated several types of apoptotic indications, such as nuclear condensation, the increase of sub G1, and the cleavage of PARP-1 and DFF 45. Conclusions : PEA showed anti-cancer activity against SCC 25 cells via apoptosis. PEA may potentially contribute to human oral cancer treatment.

The Isolation and Fusion of Pea and Barley Mesophyll Protoplasts (완두와 보리의 엽내세포 원형질체 분이 및 융합)

  • 이광웅
    • Journal of Plant Biology
    • /
    • v.23 no.2
    • /
    • pp.49-54
    • /
    • 1980
  • The optimal conditions for the protoplast isolation from the leaves of pea (Pisum sativum L. cv. Sparkle) and barley (Hordeum vulgare L. cv. Baecdong) were determined in order to achieve a somatic hybridization between two species. It was revealed that the use of 0.5M sorbitol as an osmoticum was appropriate for pea. The yield of intact protoplasts was the highest (40%) when pea leaves were incubated in the enzyme solution for 4 hours. In case of barley, the optimal concentrations of cellulase, pectinase and mannitol as the enzyme solution were 2%, 1% and 0.35M, respectively. And the yield of barley protoplasts was the highest(87%) when leaves were incubated in this enzyme solution for 3.5 hours. A fusion of protoplasts from pea and barley was induced by PEG treatment enriched with calcium salts within 60 minutes.

  • PDF

The Measurement System of Space Charge Distribution in Polymer Dielectric Materials by the PEA Method (펄스정전응력법(PEA)을 이용한 고분자 유전체 내의 공간전하분포 측정시스템)

  • Hwang, Bo-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1403-1411
    • /
    • 2012
  • In this paper, we have evaluated theoretically the PEA method which is the most popular methods for the non-destructive measurement of space charge distribution in polymer dielectric materials and is recently one of big issues in DC high voltage cables. On the basis of theoretical evaluation, we have developed the space charge measurement system in polymer dielectrics under DC appled voltage and improved the accuracy of space charge distribution by applying the deconvolution process for distorted signals.

Post-harvest Green Pea Pod Rot Caused by Sclerotinia sclerotiorum in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.46-50
    • /
    • 2022
  • In June 2017, in Gangneung, Gangwon Province, South Korea, green pea pods exhibited post-harvest rot symptoms. The fungus was isolated from infected pea pods and cultured on potato dextrose agar for identification. The morphological characteristics were examined, sequences of the internal transcribed spacer region and the β-tubulin (βtub) gene were analyzed, and the pathogenicity was confirmed according to Koch's postulates. The morphology, phylogenetic analysis, and pathogenicity tests confirmed that Sclerotinia sclerotiorum was the causal agent. This study reports the first case of post-harvest green pea pod rot caused by S. sclerotiorum in Korea.

PIGEON PEA AS A RUMINANT FEED

  • Cheva-Isarakul, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.549-558
    • /
    • 1992
  • The study on the potential use of pigeon pea (PP) as a ruminant feed was carried out with sheep in 3 experiments. Digestibility of dry pigeon pea leaves (PPL) and pigeon pea seeds (PPS) determined by differential and regression methods respectively, with rice straw (RS) as a basal diet, revealed that PPS contained higher nutritive value and palatability than PPL. On dry matter (DM) basis, PPL and PPS contained 19.8 and 20.0% CP, 7.3 and 2.3% EE, 6.0 and 4.4% ash, 61.1 and 51.7% NDF, and 29.4 and 17.5% ADF, respectively. The trypsin inhibitor activity in the seed was 3 times of that in the leaves (19.5 vs 7.0 mg TIA/g DM). The digestibility of PPL and PPS were 50.2 and 72.2% in DM, 52.7 and 73.3% in OM, 51.0 and 65.1% in CP respectively. DM intake as well as the digestibility of most nutrients increased with the increasing level of PPS. Digestible energy (DE), Total digestible nutrient (TDN) and N-balance of sheep fed solely PPS, estimated by regression method, was 3.2 kcal/g, 71.1% and 6.3 g/d respectively. Pigeon pea seeds can be well used to substitute soybean meal in concentrate rations for ruminants or directly supplemented to low quality roughages.

Bioavailability of Phosphorus in Two Cultivars of Pea for Broiler Chicks

  • Woyengo, T.A.;Emiola, I.A.;Kim, I.H.;Nyachoti, C.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.396-403
    • /
    • 2016
  • The aim was to determine the relative bioavailability of phosphorus (P) in peas for 21-day old broiler chickens using slope-ratio assay. One hundred and sixty eight male Ross 308 broiler chicks were divided into 42 groups 4 balanced for body weight and fed 7 diets in a completely randomized design (6 groups/diet) from day 1 to 21 of age. The diets were a corn-soybean meal basal diet, and the corn-soybean meal basal diet to which monosodium phosphate, brown- or yellow-seeded pea was added at the expense of cornstarch to supply 0.5% or 1% total phosphorus. Monosodium phosphate was included as a reference, and hence the estimated bioavailability of P in pea cultivars was relative to that in the monosodium phosphate. Birds and feed were weighed weekly and on d 21 they were killed to obtain tibia. The brown-seeded pea contained 23.4% crude protein, 0.47% P, whereas the yellow-seeded pea contained 24.3% crude protein and 0.38% P. Increasing dietary P supply improved (p<0.05) chick body weight gain and tibia ash and bone density. The estimated relative bioavailability of p values for brown- and yellow-seeded peas obtained using final body weight, average daily gain, tibia ash, and bone mineral density were 31.5% and 36.2%, 35.6% and 37.3%, 23.0% and 5.60%, and 40.3% and 30.3%, respectively. The estimated relative bioavailability of p values for brown- and yellow-seeded peas did not differ within each of the response criteria measured in this study. In conclusion, the relative bioavailability of P in pea did not differ depending on the cultivar (brown- vs yellow-seed). However, the relative bioavailability of P in pea may vary depending on the response criterion used to measure the bioavailability.

Topical or oral treatment of peach flower extract attenuates UV-induced epidermal thickening, matrix metalloproteinase-13 expression and pro-inflammatory cytokine production in hairless mice skin

  • Kwak, Chung Shil;Yang, Jiwon;Shin, Chang-Yup;Chung, Jin Ho
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.29-40
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Ultraviolet radiation (UV) is a major cause of skin photoaging. Previous studies reported that ethanol extract (PET) of Prunus persica (L.) Batsch flowers (PPF, peach flowers) and its subfractions, particularly the ethylacetate (PEA) and n-butanol extracts (PBT), have potent antioxidant activity and attenuate the UV-induced matrix metalloproteinase (MMP) expression in human skin cells. In this study, we investigated the protective activity of PPF extract against UV-induced photoaging in a mouse model. MATERIALS/METHODS: Hairless mice were treated with PET or a mixture of PEA and PBT either topically or orally along with UV irradiation. Histological changes and biochemical alterations of mouse skin were examined. Major phenolic compounds in PPF extract were analyzed using an ACQUITY UPLC system. RESULTS: The overall effects of topical and oral treatments with PPF extract on the UV-induced skin responses exhibited similar patterns. In both experiments, the mixture of PEA and PBT significantly inhibited the UV-induced skin and epidermal thickening, while PET inhibited only the UV-induced epidermal thickening. Treatment of PET or the mixture of PEA and PBT significantly inhibited the UV-induced MMP-13 expression, but not type I collagen expression. Topical treatment of the mixture of PEA and PBT with UV irradiation significantly elevated catalase, superoxide dismutase (SOD) and glutathione-peroxidase (GPx) activities in the skin compared to those in the UV irradiated control group, while oral treatment of the mixture of PEA and PBT or PET elevated only catalase and SOD activities, but not GPx. Thirteen phytochemical compounds including 4-O-caffeoylquinic acid, cimicifugic acid E and B, quercetin-3-O-rhamnoside and kaempferol glycoside derivatives were identified in the PPF extract. CONCLUSIONS: These results demonstrate that treatment with PET or the mixture of PEA and PBT, both topically or orally, attenuates UV-induced photoaging via the cooperative interactions of phenolic components having anti-oxidative and collagen-protective activities.

Effects of Rhizobium Inoculant, Nitrogen, Phosphorus, and Molybdenum on Nodulation, Yield, and Seed Protein in Pea

  • Rabbani M. G.;Solaiman A. R. M.;Hossain K. M.;Hossain T.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.112-119
    • /
    • 2005
  • The effects of Rhizobium inoculant, nitrogen, phosphorus, and molybdenum on nodulation, dry matter production, yield attributes, pod and seed yields, protein and phosphorus contents in seed of pea (pisum sativum) var. IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant in combination with 25kg P and 1.5kg Mo/ha performed best in recording number of nodules/plant, total dry matter yield, number of pods/plant, number of seeds/pod, 1000-seed weight, green pod yield, green and mature seed yields of pea. The highest green pod yield of 15.37 t/ha ($97.05\%$ increase over control) and green seed yield of 9.6t/ha ($69.31\%$ increase over control) were obtained by inoculating pea with Rhizobium inoculant in association with 25kg P and 1.5 Mo/ha. The effects of 60 or 120kg N/ha were comparable to Rhizobium inoculant in most cases. There were positive correlations among yield attributes, yield, protein and phosphorus contents in seeds of pea. From the viewpoint of yield attributes, yield, and seed quality, application of Rhizobium inoculant along with 25kg P and 1.5kg Mo/ha was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of pea in Shallow-Red Brown Terrace Soil of Bangladesh.

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.