• Title/Summary/Keyword: Pd-catalyzed

Search Result 72, Processing Time 0.035 seconds

Hydrogenolysis of CFC-113a$(CF_3CCl_3)$ Catalyzed by Heterogeneous Catalysts in the Liquid Phase (불균일 촉매를 이용한 CFC-113a$(CF_3CCl_3)$의 액상 가수소 분해 반응)

  • Jo, Uk Jae;Lee, Ik Mo;Kim, Hong Gon;Kim, Hun Sik
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.695-700
    • /
    • 1994
  • Hydrogenolysis reactions of CFC-113a catalyzed by various heterogeneous catalysts $(Rh/Al_2O_3,\;Pd/C,\;Ni,\;Al_2O_3,\;Active\;carbon)$ were investigated in the liquid and gas phases. In the liquid phase reaction, different catalysts showed different activities, but all catalysts used gave high selectivities toward HCFC-123 over 95%. It was noticeable that the neutral $Al_2O_3$ showed both a high activity and a selectivity in the liquid phase reaction. In the gas phase reaction, transition metals on carbon(Pd/C, Pt/C) were so active for hydrogenolysis of CFC-113a that they even catalyzed the production reaction of overhydrogenated compounds such as $HCFC-133a(CF_3CH_2Cl)\;and\;HFC-143a(CF_3CH_3)$. $Al_2O_3$, which showed the high activity in the liquid phase reaction, did not show a remarkable activity. When $Al_2O_3$ was used in the liquid phase reaction, the hydrogenolysis of CFC-113a proceeded without any side products in THF. However, the same reaction in MeOH produced side products, such as $CH_3OCH_3\;and\;CH_3CH_2OCH_3$ from solvent. Based on this result, including heterogeneous catalysts, it was concluded that the solvent played an important role in the liquid phase reaction.

  • PDF

Synthesis and Characterization of Polyamides and Polyester Prepareds by Palladium-catalyzed CO Insertion Reaction (고강도 엔지니어링 플라스틱재료의 합성 - I. Palladium-catalyzed CO Insertion 반응에 의한 전방향족 Polyamides와 Polyester의 합성 -)

  • Jun, Chang Lim;Park, Sang Bok;Park, Nae Joung;Yum, Sung Bai
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.694-700
    • /
    • 1992
  • Aromatic polyamides and polyesters with fexible spacers are prepared by Heck reaction with palladium catalysts In presence of carbon monoxide gas. Dichlorobis(triphenyl phosphine) plladium(II) ($PdCl_2(PPh_3)_2$) and palladium chloride ($PbCl_2$) are used as catalysts. Polyamides and polyesters prepared by his polymerization system have similar transition temperatures. Flexible spacer substituted on phenylene units are varied from hexyl to hexadecyl, the length of spacers effected on transition temperatures of substituted polymers.

  • PDF

The Complete Oxidation of Ethanol at Low Temperature over a Novel Pd-Ce/γ-Al2O3-TiO2 Catalyst

  • Wang, Yanping;Zhao, Jinshuang;Wang, Xiaoli;Li, Zhe;Liu, Pengfei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2461-2465
    • /
    • 2013
  • Pd-$Ce/{\gamma}-Al_2O_3-TiO_2$ catalysts were prepared by combined sol-gel and impregnation methods. Transmission electron microscopy, X-ray diffraction, $H_2$-temperature-programmed reduction, $O_2$-temperature-programmed desorption, and ethanol oxidation experiments were conducted to determine the properties of the catalysts. Addition of an optimal amount of Ce improved the performance of the $Pd/{\gamma}-Al_2O_3-TiO_2$ catalyst in promoting the complete oxidation of ethanol. The catalyst with 1% Ce exhibited the highest activity, and catalyzed complete oxidation of ethanol at $175^{\circ}C$; its selectivity to $CO_2$ reached 87%. Characterization results show that addition of appropriate amount of Ce could enrich the PdO species, and weaken the Pd-O bonds, thus enhancing oxidation ability of the catalyst. Meanwhile, the introduction of $CeO_2$ could make PdO better dispersed on ${\gamma}-Al_2O_3-TiO_2$, which is beneficial for the improvement of the catalytic oxidation activity.

A New Combined Source of "CN" from N,N-Dimethylformamide and Ammonia in the Palladium-Catalyzed Cyanation of Aryl C-H Bonds

  • Choi, Ji-Ho;Kim, Jin-Ho;Chang, Suk-Bok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.207-207
    • /
    • 2011
  • Aromatic nitriles possess versatile utilities and are indispensible not only in organic synthesis but also in chemical industry. In fact, the nitrile group is an important precursor for various functional groups such as aldehydes, amines, amidines, tetrazoles, amides, and their carboxyl derivatives. Representative methods for the preparation of organonitriles with cyanide-containing reagents are the Sandmeyer and Rosenmund-von Braun reactions. Recently, a catalytic route to aryl nitriles has been reported on the basis of the chelation-assisted C-H bond activation or metal-catalyzed cyanation of haloarenes. In those cyanation protocols, the "CN" unit is provided from metal-bound precursors of MCN (M=Cu, K, Na, Zn), TMSCN, or K3Fe(CN)6. Additionally, it can be generated in situ from nitromethane or acetone cyanohydrin. Herein, we report the first example of generating "CN" from two different, readily available precursors, ammonia and N,N-dimethylformamide (DMF). In addition, its synthetic utility is demonstrated through the Pd-catalyzed cyanation of arene C-H bonds.

  • PDF