• Title/Summary/Keyword: Pd reactor

Search Result 60, Processing Time 0.024 seconds

Submicrospheres as Both a Template and the Catalyst Source. Silica Submicro-reactor Dotted with Palladium Nanoparticles as Catalysts

  • Kim, Sung Min;Noh, Tae Hwan;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1127-1130
    • /
    • 2013
  • Formation of the monodisperse submicrospheres consisting of ionic palladium(II) complexes, $[(Me_4en)Pd(L)]_2(X)_4$($Me_4en$ = N,N,N',N'-tetramethylethylenediamine; L = bis(4-(4-pyridylcarboxyl)phenyl)methane; $X^-=BF_4{^-}$ and $ClO_4{^-}$), has been carried out without any templates or additives. The submicrospheres were coated with silicates, and then calcined in air at $550^{\circ}C$ for 1 h, to efficiently form hollow-spherical $SiO_2$ submicro-reactors dotted with palladium(0) nanoparticles (PdNPs). That is, the submicrospheres act as both a template and a source of the palladium metal nanoparticles. The submicro-reactors containing nano-catalysts have been characterized by means of SEM, TEM, and XPS. Notably, the reactors were proved to be very effective for Suzuki-Miyaura cross-coupling and hydrogenation reactions.

Improvement of Storage Stability of Apple and Kiwi at Room Temperature Using Pd/ZSM-5 Catalyst and Nonthermal Plasma (Pd/ZSM-5 촉매와 저온 플라즈마를 이용한 사과와 키위의 상온 저장 안정성 향상)

  • Kim, Seung-Geon;Lee, Ho-Won;Mok, Young Sun;Ryu, Seungmin;Jeon, Hyeongwon;Kim, Seong Bong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.547-555
    • /
    • 2021
  • A catalyst-plasma reactor was applied to the storage of agricultural products, e.g., apple and kiwi, to remove the ethylene generated during the storage. Two 1-m3 unit containers were prepared, and the long-term storage stability of the control group at room temperature was compared with that of the experimental group of which the produced ethylene was treated by the catalyst-plasma reactor. In case of the experimental group, a small amount of ozone was injected to the unit container to suppress the growth of microorganisms such as mold. The apples and kiwis were stored at room temperature for 50 and 57 days, respectively, and the changes in ethylene concentration, hardness, sugar content, acidity, and loss rate were compared. The ethylene concentration during the storage for the control group was higher than that for the experimental group, indicating that the ethylene was effectively removed. Hardness, sugar content, and sugar acid ratio after the storage were better than before the storage, and in particular, the storage stability of kiwifruit was improved significantly. In addition, after the storage, the loss rates of apples and kiwis in the control group were 10 and 54.1%, respectively, but the loss rates in the experimental group were 6 and 34.8%, respectively. Therefore, the storage stability of the experimental group was a lot better than that of the control group.

Effects of Y-Zeolite as a Support on CO, $CC_3H_6$ Oxidation for Diesel Emission Control (디젤엔진 배출가스 저감을 위한 CO, $C_3H_6$의 산화반응에서 Y-제올라이트 담체의 영향)

  • 김문찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.91-98
    • /
    • 1997
  • Y-zeolite and ${\gamma}$-Al$_2$O$_3$ were used as supports on CO and $C_3$H$_{6}$ oxidation for diesel emission control. The catalysts composed of Pd and Pt as active components were wash coated on honeycomb type ceramic substrate. The oxidation of CO and $C_3$H$_{6}$ was carried out over prepared honeycomb in a fixed bed continuous reactor in the temperature range of 20$0^{\circ}C$~50$0^{\circ}C$ and 20,000 GHSV (h$^{-1}$ ). Surface area of Y-zeolite was larger than that of ${\gamma}$-Al$_2$O$_3$ due to channel structure of Y-zeolite. Therefore, high conversion of CO and $C_3$H$_{6}$ could be obtained because of good dispersion of active metals over Y-zeolite. The honeycomb used Y-zeolite as a support showed higher $C_3$H$_{6}$ conversion than that of ${\gamma}$-Al$_2$O$_3$ due to better cracking and isomerization activity of Y-zeolite. PdPt catalyst showed high conversion of CO and $C_3$H$_{6}$ at low temperature region, 20$0^{\circ}C$~30$0^{\circ}C$, for their synergy effects. PdPt/Y-Zeolite catalyst could achieve more than 80% conversion of $C_3$H$_{6}$ at 30$0^{\circ}C$. The use of Y-zeolite as a support increased CO and $C_3$H$_{6}$ conversion, and decreased SO$_2$ conversion very effectively. Y-zeolite found to have a good adaptability as a support for the diesel emission after treatment system.

  • PDF

A Study on DeNOx Characteristics of Corona/Catalyst Hybrid System (코로나/촉매 일체형 시스템의 탈질특성에 관한 연구)

  • Chang, Hong-Ki;Choi, Chang-Sik;Shin, Jung-Uk;Ji, Young-Yeon;Hong, Min-Sun;Chung, Yoon-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.699-707
    • /
    • 2007
  • This study was carried out to investigate the reaction characteristics of corona/catalyst hybrid $DeNO_x$ process. The experiments were performed by using the multi-staged pin-to-hole type corona reactor which is enable to control the pin-to-hole gap and to insert the catalyst. Also, used for this study, were catalysts which commercially used Pt, Pd and $TiO_2$, and oxygen and hydrocarbon ($C_2H_4$) as reagents. In the syn-gas test, at high temperatures in the range of $100{\sim}200^{\circ}C$, the corona-only $DeNO_x$ process did not reduce the $NO_x$ concentration effectively. However in the presence of ethylene and oxygen as reagents, the $NO_x$ removal efficiency was better at these high temperatures than corona-only $DeNO_x$ process. In addition, coronal catalyst hybrid process with $TiO_2$ showed more efficiency of $NO_x$ removal than Pt and Pd catalyst, because the $TiO_2$ catalyst was more active than Pt and Pd catalyst to converse the $NO_2$ to $HNO_3$. Furthermore, at the condition of real diesel exhaust gas, the $DeNO_x$ efficiency of corona/catalyst hybrid process was not good at higher reaction temperature and plasma density.

A Study on the Generation of Oxygen-Free Gas Using Catalytic Combustion for Industrial Applications (촉매연소를 이용한 무 산소 가스 생성에 관한 연구)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Song, Kwang-Sup;Cho, Sung-June;Yu, Sang-Phil;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.46-52
    • /
    • 2001
  • In this study, the generation of oxygen-free gas using catalytic combustion for industrial applications is explained ; heat treatment and copper annealing. For the experiment, Pd catalysts were determined by testing their catalytic activities over LPG in a micro-reactor. Combustion characteristics for the generation of oxygen-free atmospheric gas and the effect of flue gas upon surface oxidation were estimated form this experiment. As a result of the experimental investigation, we can state that the catalytic combustion could generate oxygen-free atmospheric gas suitable for industrial applications, but vapor produced by combustion process must be carefully considered as a new factor of surface oxidation.

  • PDF

Characteristics of Heteropoly Acid Catalyst for Emission Gas Control in Methanol Fueled Vehicles (메탄올 자동차 배기가스 정화용 헤테로폴리산 촉매의 특성)

  • 서성규;박남국;박훈수;김재승
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 1995
  • To prevent or reduce air pollutant from methanol fueled vehicles, methanol oxidation reaction was carried out using a heteropoly acid catalysts. Catalytic activities of catalysts have been experimented at atmospheric pressure in a fixed bed flow reactor. Catalysts were characterized by XRD, IR, thermal analysis, N $H_{3}$-TPD and GC pulse technique. Acidities of catalysts were highly affected by poly-atoms. Methanol conversion was much higher on catalyst with W than on catalyst with Mo as a poly-atoms. With the increase of copper content(X) in C $u_{x}$ $H_{{3-2x}}$PMo catalyst, acidity was decreased and oxidation ability was increased. Methanol conversion and product distribution were affected by the acidity and oxidation ability of catalyst. Especially, supported PdSiW(1wt%) catalyst has a very good methanol conversion and C $O_{2}$ selectivity as high as a commertial 3-way catalyst.t.

  • PDF

Analysis of High Radioactive Materials in Irradiated DUPIC SIMFUEL Using EPMA (EPMA를 이용한 DUPIC 사용후 핵연료 핵분열 생성물의 특성 분석)

  • 정양홍;유병옥;주용선;이종원;정인하;김명한
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • Fission products of DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) fuel, irradiated in HANARO research reactor with 61 ㎾/m of maximum linear power and 1,770 ㎿d/tU of average burn-up, was characterized by EPMA(Electron Probe Micro Analyzer). In order to find accurate characterization, the analysis results by EPMA of fresh simulated DUPIC fuel containing fission products as chemicals were compared with that of wet chemical analysis. The metallic precipitates observed at the center of the fresh simulated DUPIC fuel were about 1 $\mu\textrm{m}$ in size and their major components by EPMA were Mo-53.89 at.%, Ru-37.40 at.%, and Pd+Rh-8.71 at.%. Established procedure through the fresh simulated DUPIC fuel was applied to the irradiated DUPIC fuel. Observed size of metallic precipitates were 2∼2.5 $\mu\textrm{m}$ and their compositions were Mo-47.34 at.%, Ru-46 at.%, and Pd+Rh-6.65 at.%. What are uncommon things for this experiment, special treatment for improving the conductivity was attempted to the specimen and the conditions of exact irradiation of electron beam to small metallic precipitate were suggested.

  • PDF

Characteristics of Catalysts System of NGOC-LNT-SCR for CNG Buses (CNG 버스용 NGOC+LNT+SCR 촉매시스템의 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.626-631
    • /
    • 2019
  • The policy-making and technological development for the supply expansion of eco-friendly automobiles has been continuing, but the internal combustion engines still accounts for about 95%. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. This study is a basic study for the post-Euro-VI exhaust response of CNG buses, and it is to investigate the basic characteristics according to Pd substitution transition metal effect, catalyst volume effect and space velocity. A catalysts was prepared and tested using a model gas reactor. The NGOC catalyst with 3Pd exhibited the highest catalytic activity with 22% at $300^{\circ}C$, 48% at $350^{\circ}C$ and about 75% at $500^{\circ}C$. 3Co NGOC containing 3wt% of transition metal was excellent in oxidation ability, and it was small in size of 2nm, and the degree of catalyst dispersion was improved and de-NO/CO conversion was high. The volume of the NGOC-LNT-SCR catalyst system was optimal in the combination of 1.5+0.5+0.5 with a total score of 165, considering $de-CH_4/NOx$ performance and catalyst cost. For SV $14,000h^{-1}$, the $CH_4$ reduction performance was the highest at about 20%, while the SV $56,000h^{-1}$ was the lowest at about 5%. If the space velocity is small, the flow velocity decreases and the time remaining in the catalyst volume become long, so that the harmful gas was reduced.

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF

Optimization of Catalytic Reaction for Synthesis of 2-Methyl-4-methoxydiphenylamine (2-Methyl-4-methoxydiphenylamine 합성을 위한 촉매반응의 최적화)

  • Cho, Jeong-Woo;Kim, Eun-Seok;Kim, Kiseok;Kim, Seong-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.293-298
    • /
    • 1999
  • Reaction mechanism was elucidated and reaction condition were optimized for the catalytic reaction synthesizing 2-methyl-4-methoxy-diphenylamine (MMDPA) which is an intermediate of Fluoran heat-sensitive dyestuff. Reactants consisted of 2-methyl-4-methoxyaniline (MMA), 3-methyl-4-nitroanisole (MNA), and cyclohexanone, and 5 wt % Pd/C was used as a catalyst. Experiments were run in an open slurry reactor equipped with reflux condenser, and products were analyzed by means of GC/MS and NMR. MMDPA yield of 90 mole % could be obtained after reaction time of 8~10 hours under the optimal reaction conditions comprising the reaction mass composition of MMA : MNA : cyclohexanone = 1 : 2 : 150 based on MMA input of 0.01 gmoles in xylene solvent, reaction temperature of $160^{\circ}C$, and catalyst amount of 0.5 g. It was found that the rate-determining step of overall reaction was dehydrogenation of the intermediate product obtained from condensation of MMA and cyclohexanone. Overall reaction rate and MMDPA yield were enhanced owing to hydrogen transfer reaction by introducing MNA together with MMA in the reaction mass. Excess cyclohexanone in the reaction mass played an important role of promoting the condensation of MMA and cyclohexanone.

  • PDF