• Title/Summary/Keyword: Pd catalyst

Search Result 283, Processing Time 0.031 seconds

A Study of Partial Oxidation of Methane by Pd Catalyst - Effects of Reaction Temperature - (팔라듐 촉매의 메탄 부분산화에 관한 연구 - 반응온도에 따른 효과 -)

  • Lee, Taek-Hong;Mun, Yeong-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.244-249
    • /
    • 2004
  • Pd catalyst have been used in hydrogenation, oxidation, and low temperature combustion reaction. Recently, it has been candidated as a possible reagents in the partial oxidation of methanol reformers of the fuel cell. Pd catalysts, even though it is very precious and expensive, catalytic functioning is good, but it still need to be improved in the matter of durability and low catalytic activity after calcination. In this study, we synthesize the improved Pd catalyst and study their chemical functioning.

A study on the pollutant reduction using catalyst in model furnace (모형소각로의 촉매에 의한 배기가스 정화특성에 관한 연구)

  • Lee, Yong-Hoo;Lee, Wha-Sin;Lee, Jin-Seok;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.870-876
    • /
    • 2006
  • In proportion to the increase of industrial development, emission troubles were concerned as global issue. For these reasons, so many researchers and associated institutes effort to reduce pollution with new technology and various devices. As a kind of these methods, we used catalysts as a after-treatment system. At first, we made equipment of model furnace. And various catalysts were equipped at exhaust duct of combustion system, and excess air ratio(a), change cell numbers catalyst materials(Pt, Pd) were changed as experimental conditions. With these various condition, temperature. NOx, CO, HC, $CO_2$ and $O_2$ concentration were measured. As a result, NOx conversion increased with increasing of cell number in Pd catalyst. And Pt catalyst became 100% conversion at 200 and 300 cell. Also, Pt catalyst was better than Pd catalyst at a=1.5 in this condition. In addition, CO and HC concentrations were decreased at a = 1.5 with Pd catalyst.

Ammonia Conversion in the Presence of Precious Metal Catalysts (귀금속촉매하에서 암모니아의 전환반응)

  • Jang, Hyun Tae;Park, YoonKook;Ko, Yong Sig
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.806-812
    • /
    • 2008
  • The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, $Pt-Rh/Al_2O_3$, $Pt-Rh/TiO_2$, $Pt-Rh/ZrO_2$, $Pt-Pd/Al_2O_3$, $Pd-Rh/Al_2O_3$, $Pd-Rh/TiO_2$, $Pd-Rh/ZrO_2$, $Pt-Pd-Rh/Al_2O_3$, $Pd/Ga-Al_2O_3$, $Rh/Ga-Al_2O_3$, and Ru/Ga-$Al_2O_3$, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at $10,000{\sim}50,000hr^{-1}$ of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both $T_{50}$ and $T_{90}$, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, $Pt-Rh/Al_2O_3$ catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.

A study on the pollutant reduction using catalyst in model furnace (모형소각로의 촉매에 의한 배기가스 정화특성에 관한 연구)

  • Lee, Yong-Hoo;Lee, Jin-Seok;Lee, Hwa-Sin;Kang, In-Gu;Lee, Do-Hyung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.154-159
    • /
    • 2005
  • In proportion to the increase of industrial development, emission troubles were concerned as global issue. For these reasons, so many researchers and associated institutes effort to reduce pollution with new technology and various devices. As a kind of these methods, we used catalysts as a after-treatment system. At first, we made equipment of model furnace. And various catalysts were equipped at exhaust duct of combustion system, and excess air ratio( ), change cell numbers, catalyst materials(Pt, Pd) were changed as experimental conditions. With these various condition, temperature, NOx, CO, HC, $CO_2$ and $O_2$ concentration were measured. As a result, NOx conversion were increased with increasing of cell number in Pd catalyst. And Pt catalyst were became 100% conversion at 200 and 300 cell. Also, Pt catalyst was better than Pd catalyst ${\alpha}$=1.5 in this condition. In addition, CO and HC concentrations were decreased${\alpha}$=1.5 with Pd catalyst.

  • PDF

Characteristics of Rh- Pd- Pt Three-Way Catalysts with Double-Layer Washcoat on the Hydrothermal Aging (이중층 워시코트 Rh-Pd-Pt 삼원촉매의 열적 열하에 따른 반응 특성)

  • Choi Byungchul;Jeong Jongwoo;Son Geonseog;Jung Myunggun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The research was conducted to characterize of Rh-Pd-Pt TWC with a double-layer washcoat for gasoline vehicle. The physical characteristics on surface of catalyst were inspected by BET, SEM and TEM. The characteristics of catalytic reaction were examined by the TPD/TPR and CO-pulse chemisorption. The catalyst $6Hx(0.35\times11\times3)$ showed superior conversion performance after hydrothermal aging process, which was due to small difference of the surface area between. the fresh and the aged catalyst. The CO-chemisorption and surface area were superior in the 600 cpsi catalyst than other catalysts, this catalyst also shown the higher conversion efficiency of the exhaust emissions. From the TPR test, the conversion performance of the aged catalyst was decreased by the agglomeration and sintering of the PM and metal oxides. From the TPD result, it was found that the NO chemisorption was happed on the bottom-layer washcoat with Pd, and the NO chemisorption was re-happened on the upper-layer washcoat with Pt and Rh in the desorption process.

Hydropurification of Crude Terephthalic Acid over PdRu/Carbon Composite Catalyst (PdRu/Carbon Composite 촉매를 이용한 테레프탈산의 수소화 정제)

  • Jhung, Sung-Hwa;Park, Youn-Seok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.57-63
    • /
    • 2002
  • The hydropurification reaction of CTA (crude terephthalic acid) was carried out with hydrogen over PdRu/CCM (carbon-carbonaceous composite material) catalyst in a batch reactor at high temperature. The first order kinetics of hydropurification is confirmed with the linear dependence of ln(4-CBA; 4-carboxybenzaldehyde) with reaction time. The reaction condition studied is thought to represent the hydropurification well because of the linear dependence of catalytic activity on the catalyst weight. The p-toluic acid (p-tol) in solid and liquid increases with the conversion of reaction or the decrease of 4-CBA. However, the benzoic acid (BA) concentration does not depend much on the conversion. The AT (alkali transmittance) does not depend on the 4-CBA when the concentration is higher than about 0.2% which shows the 4-CBA, in itself, does not cause the coloring effect. The AT of PTA depends inversely with the concentration of 4-CBA when the 4-CBA is less than about 0.15%. This may show the coloring materials are removed in parallel with the hydrogenation of 4-CBA. The (0.3%Pd-0.2%Ru)/CCM shows larger residual catalytic activity than a commercial catalyst, 0.5%Pd/C, after using in a commercial reactor even though the former has smaller fresh activity than the latter. The palladium and ruthenium in PdRu/CCM show the synergetic effect in activity when the ruthenium concentration is about $0.2{\sim}0.35$ wt%. It may be supposed that the PdRu/CCM catalyst can be a promising candidate to replace the commercial Pd/C catalyst.

Effect of Catalyst Preparation on the Selective Hydrogenation of Biphenol over Pd/C Catalysts

  • Cho, Hong-Baek;Park, Jai-Hyun;Hong, Bum-Eui;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.328-334
    • /
    • 2008
  • The effects of catalyst preparation on the reaction route and the mechanism of biphenol (BP) hydrogenation, which consists of a long series-reaction, were studied. Pd/C catalysts were prepared by incipient wetness method and precipitation and deposition method. The reaction behaviors of the prepared catalysts and a commercial catalyst along with the final product distributions were very different. The choice of the catalyst preparation conditions during precipitation and deposition including the temperature, pH, precursor addition rate, and reducing agent also had significant effects. The reaction behaviors of the catalysts were interpreted in terms of catalyst particle size, metal distribution, and support acidities.

Catalytic Hydrogenation of Aromatic Nitro Compounds over Borohydride Exchange Resin Supported Pd (BER-Pd) Catalyst

  • Yoon, Nung-Min;Lee, Hyang-Won;Choi, Jae-Sung;Lee, Hyun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.281-283
    • /
    • 1993
  • Aromatic nitro compounds are selectively hydrogenated to the corresponding amines in high yields at room temperature and atmospheric pressure using BER-Pd catalyst without affecting ketone, ether, ester, nitrile or chloro groups also present. Especially the nitro group in 4-nitrobenzyl alcohol, methyl 4-nitrobenzyl ether and N-N-dimethyl 4-nitrobenzylamine is selectively hydrogenated with this catalyst to give the corresponding amines without hydrogenolysis of benzylic groups. And aromatic nitro compound can be reduced selectively in the presence of aliphatic nitro compound.

Effect of Ultrasonic Agitation on Pd Catalyst Treatment (파라듐 촉매화 처리에 미치는 초음파 교반의 영향)

  • 김동규;이홍로;추현식
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.545-552
    • /
    • 2001
  • Effect of ultrasonic agitation on Pd catalyst treatment was studied in metallization of ceramic boards by Cu electroless plating method.96% $Al_{2}$$O_{3}$ ceramic boards were used as substrate. In this study, the ultrasonic frequency of 28kHz was applied. In Pd catalyst, high density Pd nuclei of small size were formed during ultrasonic agitation. Density of Pd was more improved when using of ultrasonic then no stirring. In electroless plating, plating rate was in the range of 0.6~1.8$\mu\textrm{m}$/hr, which value increased with Rochelle Salts addition. Adhesion strength between ceramic boards and Cu layer was improved of 20% when using ultrasonic agitation at $30^{\circ}C$ ,5min.

  • PDF

Effect of Plasma Etching and $PdCl_2/SnCl_2$ Catalyzation on the Performance of Electroless Plated Copper Layer (플라즈마 에칭 및 $PdCl_2/SnCl_2$ 촉매조건이 무전해 동도금 피막의 성능에 미치는 영향)

  • 오경화;김동준;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.7
    • /
    • pp.843-850
    • /
    • 2003
  • Cu/PET film composites were prepared by electroless copper plating method. In order to improve adhesion between electroless plated Cu layer and polyester (PET) film, the effect of pretreatment conditions such as etching method, mixed catalyst composition were investigated. Chemical etching and plasma treatment increased surface roughness in decreasing order of Ar>HCl>O$_2$>NH$_3$. However, adhesion of Cu layer on PET film increased in the following order: $O_2$<Ar<HCl<NH$_3$. It indicated that appropriate surface roughness and introduction of affinitive functional group with Pd were key factors of improving adhesion of Cu layer. PET film was more finely etched by HCI tolution, resulting in an improvement in adhesion between Cu layer and PET film. Plasma treatment with NH$_3$produced nitrogen atoms on PET film, which enhances chemisorption of Pd$^{2+}$ on PET film, resulting in improved adhesion and shielding effectiveness of Cu layer deposited on the Pd catalyzed surface. Surface morphology of Cu plated PET film revealed that Pd/Sn colloidal particles became more evenly distributed in the smaller size by increasing the molar ratio of PdCl$_2$; SnCl$_2$from 1 : 4 to 1 : 16. With increasing the molar ratio of mixed catalyst, adhesion and shielding effectiveness of Cu plated PET film were increased.d.