• Title/Summary/Keyword: PbTe

Search Result 95, Processing Time 0.023 seconds

Fabrication of Nonlinear Optical Fiber Doped with PbTe Quantum Dots Using Atomization Doping Process and its Optical Property (Atomization 방법을 이용한 PbTe quantum dots이 함유된 비선형 광섬유의 제조 및 광특성)

  • Ju, Seong-Min;Lee, Su-Nam;Kim, Taek-Jung;Han, Won-Taek
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.02a
    • /
    • pp.360-361
    • /
    • 2004
  • An atomization doping process is proposed to manufacture nonlinear optical fiber containing higher concentration of PbTe nano-particles in the core of the fiber than that by the conventional solution doping process. The absorption peaks appeared near 725nm, 880nm, and 1050nm are attributed to the PbTe quantum dots in the fiber core.

  • PDF

Electron Microscope Analyses of Self-aligned HgTe Nanocrystallites Induced by Controlled Precipitation Technique

  • Lee, Man-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.8-13
    • /
    • 2002
  • Controlled precipitation of quasi-binary semiconductor system is newly proposed as an effective and reliable technique for the formation of well-defined and crystallographically aligned semiconductor nanostructures. Using HgTe-PbTe quasi-binary semiconductor system, self-aligned HgTe nanocrystallites distributed three dimensionally within PbTe matrix were successfully formed by the simple three step heat treatment process routinely found in age hardening process of metallic alloys. Examination of the resulting nano precipitates using conventional transmission electron microscopy (CTEM) and high resolution TEM (HRTEM) reveals that the coherent HgTe precipitates form as thin discs along the (100) habit planes making a crystallographic relation of {100}$\_$HgTe///{100}$\_$PbTe/ and [100]$\_$HgTe///[100]$\_$PbTe/. It is also found that the precipitate undergoes a gradual thickening and a faceting under isothermal aging up to 500 hours without any noticeable coarsening. These results, combined with the extreme dimension of the precipitates (4-5 nm in length and sub-nanometer in thickness) and the simplicity of the formation process, leads to the conclusion that controlled precipitation is an effective method for preparing desirable quantum-dot nanostructures.

PbTe-$Bi_2Te_3$계 열전소재의 계단식 냉각법에 따른 열전특성

  • Yim, Ju-Hyuk;Jung, Kyoo-Ho;Choi, Won-Chul;Kim, Hyo-Jung;You, Hyun-Woo;Kim, Kwang-Chon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.237-237
    • /
    • 2010
  • 고효율의 열전특성을 갖는 나노 구조체 열전재료 연구의 일환으로 이종물질인 $Bi_2Te_3$-PbTe계 열전소재의 미세구조와 특성을 조사하였다. 계단식 냉각법(step cooling)를 통하여 시편을 제조 하였고, EPMA를 이용하여 시편의 미세구조를 관찰하였다. 열전소재의 상분리를 유도하기 위하여 $700^{\circ}C$에서 용융 후 3일 동안 $400^{\circ}C$로 유지시킨 후 상온까지 용융로에서 서냉하였다. EPMA를 이용하여 제조된 시편의 미세구조와 정량 분석을 하였고, 각 상의 결정구조 확인을 위하여 XRD 분석법을 이용하여 다결정의 PbTe와 $Bi_2Te_3$ 그리고 준안정상인 $PbBi_2Te_4$가 관찰 되었다. 계단식 냉각법을 통한 시편의 열전특성을 측정하였다. 이를 통하여 제조된 시편은 급속 냉각법으로 제조된 시편과 비교되었으며, 제벡계수는와 열전도도는 상온에서 각각 약 -100mV/K와 0.9W/mK로 약90%, 40%의 열전특성 향상을 확인하였다.

  • PDF

Thermoelectric properties of individual PbTe nanowires grown by a vapor transport method

  • Lee, Seung-Hyun;Jang, So-Young;Lee, Jun-Min;Roh, Jong-Wook;Park, Jeung-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.7-7
    • /
    • 2009
  • Lead telluride (PbTe) is a very promising thermoelectric material due to its narrow band gap (0.31 eV at 300 K), face-centered cubic structure and large average excitonic Bohr radius (46 nm) allowing for strong quantum confinement within a large range of size. In this work, we present the thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. A combination of electron beam lithography and a lift-off process was utilized to fabricate inner micron-scaled Cr (5 nm)/Au (130 nm) electrodes of Rn (resistance of a near electrode), Rf (resistance of a far electrode) and a microheater connecting a PbTe nanowire on the grid of points. A plasma etching system was used to remove an oxide layer from the outer surface of the nanowires before the deposition of inner electrodes. The carrier concentration of the nanowire was estimated to be as high as $3.5{\times}10^{19}\;cm^{-3}$. The Seebeck coefficient of an individual PbTe nanowire with a radius of 68 nm was measured to be $S=-72{\mu}V/K$ at room temperature, which is about three times that of bulk PbTe at the same carrier concentration. Our results suggest that PbTe nanowires can be used for high-efficiency thermoelectric devices.

  • PDF

Thermoelectric Properties of PbTe Prepared by Spark Plasma Sintering of Nano Powders (나노 분말을 Spark Plasma 소결해 제조한 PbTe의 열전 특성)

  • Jun, Eun-Young;Kim, Ho-Young;Kim, Cham;Oh, Kyung-Sik;Chung, Tai-Joo
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.384-389
    • /
    • 2018
  • Nanoparticles of PbTe are prepared via chemical reaction of the equimolar aqueous solutions of $Pb(CH_3COO)_2$ and Te at $120^{\circ}C$. The size of the obtained particles is 100 nm after calcination in a hydrogen atmosphere. Dense specimens for the thermoelectric characterization are produced by spark plasma sintering of prepared powders at $400^{\circ}C$ to $500^{\circ}C$ under 80 MPa for 5 min. The relative densities of the prepared specimens reach approximately 97% and are identified as cubic based on X-ray diffraction analyses. The thermoelectric properties are evaluated between $100^{\circ}C$ and $300^{\circ}C$ via electrical conductivity, Seebeck coefficient, and thermal conductivity. Compared with PbTe ingot, the reduction of the thermal conductivities by more than 30% is verified via phonon scattering at the grain boundaries, which thus contributes to the increase in the figure of merit.

Electrical properties of Low Fired Pb(Mg,Te,Mn,Nb)$O_3-Pb(Zr,Ti)O_3$ Ceramics (저온에서 소결한 Pb(Mg,Te,Mn,Nb)$O_3-Pb(Zr,Ti)O_3$세라믹스의 전기적 특성)

  • 정수태;조상희
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.652-659
    • /
    • 1996
  • Sintering characteristics and electrical properties of xPb(Mg$_{1}$8/Te$_{1}$8/Mn$_{1}$4/Nb$_{1}$2/) $O_{3}$-(1-x) Pb (Zr$_{1}$2/ $Ti_{1}$2/) $O_{3}$ (x=0.075, 0.1, 0.125) ceramics are investigated. A sintering temperature of ceramics could be reduced to 950.deg. C by a reaction between PbO and B site compound material. The physical properties of 0.1Pb(Mg, Te, Mn, Nb) $O_{3}$ - 0.9Pb(Zr, Ti) $O_{3}$ bulk ceramic with 3wt% glass frit(0.857PbO-0.143W $O_{3}$) were following : den = 7.95 g/cm$^{3}$, T$_{c}$=340.deg. C, .epsilon.$_{33}$= 754, k$_{31}$=0.3 and Q.=1780. The 3-layer piezoelectric transformer by using a tape casting method showed a good monolithic structure, and its voltage setup ratio was 2.5 times higher than that of a single device by using bulk ceramics.s.s.

  • PDF

Chemical Analysis and Thermoelectric Properties of the PbSnTe Semiconductors (화학조성에 따른 PbSnTe계 반도체의 열전특성조사)

  • Oh, Kyu-Whan;Oh, Seung-Mo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 1990
  • The semiconducting $(Pb_1\;_xSn_x)_1$ $_yTe_y$, one of the low - temperature thermoelectric materials, has been prepared and its chemical composition and nonstoichiometry has been analyzed. The content of Pb in the specimens was determined by the complexometric back - titration method with EDTA and Pb(II) standard solutions. Te - content was analyzed with the redox titration method. The electrical conductivity and the thermoelectric power have also been measured by the DC 4 - probe and the heat-pulse technique, respectively. All of the specimens showed a nonstoichiometric behavior in their chemical compositions (Te excess), thus gave rise to a p - type semiconducting property, and the nonstoichoimetry became bigger as the Sn - content increased. The thermoelectric power vs. temperature results have been analyzed upon the basis of the Fermi level vs. temperature profiles in the saturation regime. The specimen of x=0.1 evolved a transition from p - to n - type property at about 670K, which has been explained by the fact that the mobility of electrons is bigger than that of holes in the temperature range of the intrinsic regime.

  • PDF