• Title/Summary/Keyword: Pb-free solder waste

Search Result 2, Processing Time 0.016 seconds

Effect of Sn Decorated MWCNT Particle on Microstructures and Bonding Strengths of the OSP Surface Finished FR-4 Components Assembled with Sn58%Bi Composite Solder Joints (OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향)

  • Park, Hyun-Joon;Lee, Choong-Jae;Min, Kyung Deuk;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.163-169
    • /
    • 2019
  • Sn-Pb solder alloys in electronics rapidly has been replaced to Pb free solder alloys because of various environmental regulations such as restriction of hazardous substances directive (RoHS), European Union waste electrical, waste electrical and electronic equipment (WEEE), registration evaluation authorization and of chemicals (REACH) etc. Because Sn58%Bi (in wt.%) solder alloy has low melting point and higher mechanical properties than that of Sn-Pb solder, it has been studied to manufacture electronic components. However, the reliability of Sn58%Bi solder could be lowered because of the brittleness of Bi element included in the solder alloy. Therefore, we observed the microstructures of Sn58%Bi composite solders with various contents of Sn-decorated multiwalled carbon nanotube (Sn-MWCNT) particles and evaluated bonding strength of the FR-4 components assembled with Sn58%Bi composite solder. Also, microstructures and bonding strengths of the Sn58%Bi composite solder joints were evaluated with the number of reflows from 1 to 7 times, respectively. Bonding strengths and fracture energies of the Sn58%Bi composite solder joints were measured by die shear test. Microstructures and fracture modes were observed with scanning electron microscope (SEM). Microstructures in the Sn58%Bi composite solder joints were finer than that of only Sn58%Bi solder joint. Bonding strength and fracture energy of Sn58%Bi composite solder including 0.1 wt.% of Sn-decorated MWCNT particles increased up to 20.4% and 15.4% at 5 times in reflow, respectively.

Electrochemical Behavior of Tin and Silver during the Electrorecycling of Pb-free Solder (Sn-Ag-Cu) Waste (폐무연솔더(Sn-Ag-Cu)의 전해재활용 시 주석과 은의 전기화학적 거동 연구)

  • Kim, Min-seuk;Lee, Jae-chun;Kim, Rina;Chung, Kyeong-woo
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.61-72
    • /
    • 2022
  • We investigated the electrochemical behavior of Sn (93.0 %)-Ag (4.06 %)-Cu (0.89 %) during electrolysis of Pb-free solder waste to recover tin and silver. A thin strip of the solder waste produced by high-temperature melting and casting was used as a working electrode to perform electrochemical analysis. During anodic polarization, the current peak of an active region decreased with an increase in the concentration of sulfuric acid used as an electrolyte. This resulted in the electro-dissolution of the working electrode in the electrolyte (1.0 molL-1 sulfuric acid) for a constant current study. The study revealed that the thickening of an anode slime layer at the working surface continuously increased the electrode potential of the working electrode. At 10 mAcm-2, the dissolution reaction continued for 25 h. By contrast, at 50 mAcm-2, a sharp increase in the electrode potential stopped the dissolution in 2.5 h. During dissolution, silver enrichment in the anode slime reached 94.3% in the 1 molL-1 sulfuric acid electrolyte containing a 0.3 molL-1 chlorine ion, which was 12.7% higher than that without chlorine addition. Moreover, the chlorine enhanced the stability of the dissolved tin ions in the electrolyte as well as the current efficiency of tin electro-deposition at the counter electrode.