• Title/Summary/Keyword: Pb addition

Search Result 748, Processing Time 0.027 seconds

Lead-free BaTiO3-(Bi0.5K0.5)TiO3 PTCR Ceramics and Effects of Nb2O5 on Its PTCR Characteristics (무연 BaTiO3-(Bi0.5K0.5)TiO3 PTCR 세라믹과 PTCR 특성에 미치는 Nb2O5의 효과)

  • Jeong, Young-Hun;Park, Yong-Jun;Lee, Mi-Jae;Lee, Young-Jin;Paik, Jong-Hoo;Choi, Jin-Soo;Lee, Woo-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.475-481
    • /
    • 2008
  • Positive temperature coefficient of resistivity (PTCR) characteristics of (1-x)$BaTiO_3-x(Bi_{0.5}K_{0.5})TiO_3$ ceramics doped with $Nb_2O_5$ were investigated in order to develop the Pb-free PTC thermistor available at high temperatures of > $120^{\circ}C$. The PTCR characteristics appearing in the ($B_{i0.5}K_{i0.5})TiO_3$ (< 5 mol%) incorporated $BaTiO_3$ ceramics, which might be mainly due to $Bi^{+3}$ ions substituting for $Ba^{+2}$ sites. The 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics showed good PTCR characteristics of a low resistivity at room temperature (${\rho}_r$) of $31{\Omega}{\cdot}cm$ a high ${\rho}_{max}/{\rho}_{min}$ ratio of $5.38{\times}10^3$, and a high resistivity temperature factor (${\alpha}$) of $17.8%/^{\circ}C$. The addition of $Nb_2O_5$ to 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics further improved the PTCR characteristics. Especially, 0.025 mol% $Nb_2O_5$ doped 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics exhibited a significantly increased ${\rho}_{max}/{\rho}_{min}$ ratio of $8.7{\times}10^3$ and a high ${\alpha}$ of $18.6%/^{\circ}C$, along with a high $T_c$ of $148^{\circ}C$ despite a slightly increased ${\rho}_r$ of $31{\Omega}{\cdot}cm$.

Study on Soil Extraction Methods for the Human Health Risk Assessment of Crop Intake Pathway around Abandoned Metal Mine Areas (폐금속광산 지역 농작물섭취경로의 인체위해도 산정을 위한 생물농축계수와 토양분석방법에 관한 연구)

  • Lim, Tae-Yong;Lee, Sang-Woo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.56-66
    • /
    • 2016
  • Generally, the contribution of crop-intake pathway (CIP) is remarkable in human health assessment (HHA) of heavy metal contamination. Although the crop exposure concentrations (Cp) should directly be used for calculating the average daily dose (ADD) of CIP, the soil exposure concentration (Cs) multiplied by soil-crop bio-concentration factor (BCF) has frequently been used instead of using Cp values. Thus, the BCF values are significant in the HHA, and care should be taken to ensure the reasonable acquisition of BCF values. Meanwhile, the BCF values are known to be significantly affected by analytical methods. Nevertheless, they have been calculated from the concentrations of soil and crop analyzed by only one method: total digestion (aqua regia extraction). For this reason, this study was initiated to seek appropriate soil analysis methods for effective computation of the ADD of CIP. The concentrations of 5 metal contaminants (As, Cd, Cu, Pb, and Zn) in 127 soil samples obtained from 4 abandoned metal mine areas were analyzed by several methods including total digestion and partial digestions using 0.1/1 N HCl, 1M $NH_4NO_3$, 0.1 M $NaNO_3$, and 0.01M $CaCl_2$. The heavy metal concentrations in 127 crop samples (rice grains) were analyzed by total digestion as well. Using the concentrations of soils and crops, the BCF values of each contaminant were calculated according to the kind of soil extraction methods applied. Finally, the errors between Cp and $C_s{\times}BCF$ were computed to evaluate the relevance of each method. The results indicate that the partial extraction using 0.1 N and 1 N HCl was superior or equivalent to total digestion. In addition, the 0.1M $NaNO_3$ method combined with total digestion is recommended for improving the reliability of BCF values.

Atom-by-Atom Creation and Evaluation of Composite Nanomaterials at RT based on AFM

  • Morita, Seizo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.73-75
    • /
    • 2013
  • Atomic force microscopy (AFM) [1] can now not only image individual atoms but also construct atom letters using atom manipulation method [2]. Therefore, the AFM is the second generation atomic tool following the well-known scanning tunneling microscopy (STM). The AFM, however, has the advantages that it can image even insulating surfaces with atomic resolution and also measure the atomic force itself between the tip-apex outermost atom and the sample surface atom. Noting these advantages, we have been developing a novel bottom-up nanostructuring system, as shown in Fig. 1, based on the AFM. It can identify chemical species of individual atoms [3] and then manipulate selected atom species to the designed site one-by-one [2] to assemble complex nanostructures consisted of many atom species at room temperature (RT). In this invited talk, we will introduce our results toward atom-by-atom assembly of composite nanomaterials based on the AFM at RT. To identify chemical species, we developed the site-specific force spectroscopy at RT by compensating the thermal drift using the atom tracking. By converting the precise site-specific frequency shift curves, we obtained short-range force curves of selected Sn and Si atoms as shown in Fig. 2(a) and 2(b) [4]. Then using the atom-by-atom force spectroscopy at RT, we succeeded in chemical identification of intermixed three atom species in Pb/Sn/Si(111)-(${\surd}3$'${\surd}3$) surface as shown in Fig. 2(c) [3]. To create composite nanostructures, we found the lateral atom interchange phenomenon at RT, which enables us to exchange embedded heterogeneous atoms [2]. By combining this phenomenon with the modified vector scan, we constructed the atom letters "Sn" consisted of substitutional Sn adatoms embedded in Ge adatoms at RT as shown in Fig. 3(a)~(f) [2]. Besides, we found another kind of atom interchange phenomenon at RT that is the vertical atom interchange phenomenon, which directly interchanges the surface selected Sn atoms with the tip apex Si atoms [5]. This method is an advanced interchangeable single atom pen at RT. Then using this method, we created the atom letters "Si" consisted of substituted Si adatoms embedded in Sn adatoms at RT as shown in Fig. 4(a)~(f) [5]. In addition to the above results, we will introduce the simultaneous evaluation of the force and current at the atomic scale using the combined AFM/STM at RT.

  • PDF

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

Isolation of Cadmium-Tolerant Bacteria and Characterization of Cadmium Accumulation into the Bacteria Cell (카드뮴 내성균(耐性菌)의 분리(分離), 동정(同定)및 균체내(菌體內) 카드뮴 축적(蓄積) 특성(特性))

  • Cho, Ju-Sik;Han, Mun-Gyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1992
  • Of the cadmium-tolerant 162 bacterial strains isolated from soils, river waters or active sludges of waste-water disposal plants in the Gyeongnam province a strain C1, which showed considerably higher growth rate in the agar plate containing 2000 ppm than any other strains isolated, was identified as a Pseudomonas putida or its similar strain when analyzed by taxonomical characteristics. Optimum pH and temperature for the growth of the P, putida were 7.0 and $30^{\circ}C$, respectively. This strain was resistant to antibiotics(ampicillin, chloramphenicol and streptomycin), and heavy metals(lithium, cupper, lead and zinc). This strain utilized salicylate, naphthalene or xylene as a sole carbon source. The rate of cadmium accumulation in P. putida cell was enhanced at low concentration of Cd in the growth media. The maximum cadmium absorption by this strain grown in 1 and l0ppm of Cd was respectively 78% and 60% 24 hrs after culture, but in 100 ppm Cd, 40% 48 hrs after culture. Addition of a non-ionic surfactant Triton X-100(0.1%) to the medium enhanced the accumulation of cadmium in the P. putida up to approximately 37%.

  • PDF

A Study on the Sewage Sludge and Casting Charateristic Variation During the Continus Vermicomposting (지렁이 퇴비화장치 연속운영시 하수슬러지 침출액 및 분변토 특성변화에 관한 연구)

  • Lee, Chang-Ho;Kim, Jong-Oh
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.35-41
    • /
    • 2003
  • The on-site sewage sludge vermicomposting equipment was designed and evaluated on the batch and continuous tests. The vermicomposting equipment was designed to consider the mechanization as well as automation. Especially, the automatic controls of water content and temperature and the mechanization of the sludge feeding and cast separating were the important factors. In terms of changes in chemical characteristics when the equipments for experiments are operated continuously, the ORP, EC, $NH_3-N$ and $NO_3-N$ were found to be higher before and after treatment. In addition, it was found that changes in properties were low. Furthermore, the $NO_3-N$ concentration of the humus produced after treatment was found to be higher than the $NH_3-N$ concentration showing that it was appropriate based on the recycling criteria.

  • PDF

Stabilization of Heavy Metals using Ca-Citrate-Phosphate Solution: Effect of Soil Microorganisms (구연산/칼슘/인산염 용액을 이용한 토양 중금속 안정화: 토양 미생물이 미치는 영향)

  • Song, Ho-Cheol;Song, Doo-Sup;Cho, Dong-Wan;Park, Sung-Won;Choi, Sang-Hun;Jeon, Byong-Hun;Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.241-248
    • /
    • 2009
  • A farming area located near an abandoned copper mine in GuPo-ri, Choongchung province is heavily contaminated with heavy metals such as As, Pb, Cd, Cu and Zn of which concentrations are higher than the values typically detected in Korean soil environment. In this work, laboratory and field studies were conducted to examine feasibility of using Ca-citrate-phosphate solution in stabilizing heavy metals in the polluted soils. In laboratory batch experiments with field soil, the addition of Ca-citrate-phosphate solution resulted in decrease of aqueous phase concentration of phosphate and improvement of heavy metal stabilization, compared to those for sterilized soil samples. This indicates that microbial uptake of phosphate may have provided positive effects on availability of phosphate toward heavy metal stabilization. According to microbial community analysis for the field experiment, the use of Ca-citrate-phosphate led to increased diversity of microbial populations, and strict anaerobic microorganisms such as Anaerofilum and Treponema became the most dominant populations in the solution-amended field experiments. These findings suggest that, when Ca-citrate-phosphate is used for heavy metal stabilization in soils, microbial processes may have important roles in improving the stabilization of heavy metals by providing reducing conditions to the treatment locations or/and by making phosphate available to heavy metal stabilization.

Soil Pollution and Contaminated Soil Management of the Public Housing Agency in Residential Land Development (전국 토양오염실태 및 공공택지개발지구의 오염토양 관리)

  • Oh, Jeongik;Jin, Kyunam;Lee, Hyunjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.377-386
    • /
    • 2016
  • The purposes of this research are to examine soil pollution in the nation and to explore the contaminated soil management of the public housing agency in public land for residential development. In so doing, the primary and secondary data were utilized, the former made use of the public data annually released by the Korea Ministry of Environment, and the latter relied on a self-administerd questionnaire survey conducted in the staff of the public housing agency, particularly those in charge of soil contamination in large-scale land, housing and urban development projects. The findings reveal that the national concentrations of 21 inorganic and organic soil contaminants (e.g., Cd, Cu, As, Hg, Pb, Cr, Zn, Ni, F, P, PCB, CN, Phenol, BTEX, TPH, TCE, PCE, Benzo(a)pyrene, and pH) in the land were extracted to be well below the risk level designated by the statutory guidance while industrial areas had them at a relatively modest level. In addition, the survey results indicate that the public housing agency didn't establish specific and clear guidelines for soil pollution and its remediation in the residential land development, so that contaminated sites have been primarily remediated by outsourcing companies. As the unexpected occurrence of contaminated sites causes the incurring expenses added to total project budget, the provision of both professional training and on-site manuals with the sufficient information on techniques and methods of soil contamination is critical to promptly and systematically deal with soil pollution.

Monitoring of total ash, acid-insoluble ash and heavy metals content contained in herbal medicines classified by parts used (한약재의 약용부위에 따른 회분, 산불용성회분 및 중금속 함량)

  • Kim, Dong-Gyu;Kim, Kyung-Sik;Lee, Sung-Deuk;Jung, Kweon;Park, Seung-Kook
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.114-120
    • /
    • 2014
  • The aim of this study was to investigate of total ash, acid-insoluble ash and heavy metals content contained in commercial herbal medicines classified by parts used. A total of 1504 samples (84 species) purchased from markets in Seoul, are classified by five kinds of plant parts. The mean of total ash and acidinsoluble ash content (%) were as follows; Herba 9.0, 1.1, Caulis and cortex 6.1, 1.0, Flos fructus and semen 5.1, 0.8, Radix 4.6, 0.7 and Rhizoma 4.3, 0.4. The total amount of individual heavy metals content (mg/kg) (Pb, As, Cd and Hg) was high in Herba 1.13 and decreased in the order of Caulis and cortex 1.07, Rhizoma 0.91 and Radix 0.91, and was low in Flos fructus and semen 0.73. In addition, acid-insoluble ash contents was correlated with the total amount of individual heavy metals (r=0.314) (p<0.01).

Status and Changes in Chemical Properties of Paddy Soil in Gangwon Province

  • Yoon, Byeong-Sung;Choi, Seung-Chul;Lim, Soo-Jeoung;Heo, Su-Jeong;Kim, In-Jong;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • The chemical properties of paddy fields in Gangwon province were monitored every 4 years from 2003 to 2015 in order to provide basic information for soil fertility management of paddy fields. In 2015, the soil chemical properties of paddy fields were 5.9 in pH, $22g\;kg^{-1}$ in organic matter (OM), and $123mg\;kg^{-1}$ in available (Avail.) phosphate $P_2O_5$. Exchangeable (Exch.) potassium (K), calcium (Ca) and magnesium (Mg) were 0.39, 4.8 and $0.9cmolc\;kg^{-1}$, respectively, and Avail. $SiO_2$ was $170mg\;kg^{-1}$. In the long-term analysis, the contents of Avail. $SiO_2$, Exch. K and pH of paddy soils showed increasing tendency. However, Avail. $P_2O_5$, Exch. Ca and Mg tended to decrease, and there were no significant changes in the contents of OM. Soil OM, Avail. $P_2O_5$ and $SiO_2$ were not different among the different topographical sampling sites. However, the mean value of Exch. K and Ca were different among the different topographical sampling sites, and exceeded optimal values in the fluvio-marine plains. Different soil texture resulted in different soil pH, while no difference for OM, Avail. $P_2O_5$ and $SiO_2$. Paddy soil samples within appropriate pH range increased from 65% in 2003 to 77% in 2007, 68% in 2011, and 71% in 2015. In case of Avail. $SiO_2$, soil samples within appropriate range increased from 20% in 2003, to 37% in 2007, 29% in 2011, and 45% in 2015. Meanwhile, Cd and Pb were distributed to less than 5% of soil pollution standards. Cu, As and Zn were distributed to less than 10%, 15% and 20%, respectively. Therefore, paddy soil in Gangwon Province was judged to be safe. As a result, paddy fields with more or less in nutrient level need to be fertilized based on the soil analysis. And the application of silicate fertilizer is strongly recommended to those of paddy fields in need. In addition, soil management including the cultivation of green manure crop or application of rice straw is necessary to increase the organic matter content of paddy soil.