• Title/Summary/Keyword: Pb

Search Result 7,034, Processing Time 0.035 seconds

Effect of Excess and Deficiency of PbO on the Sintering and Electrical Properties of PZT Ceramics (PbO 과잉 및 결핍이 PZT 세라믹스의 소결 및 전기적 특성에 미치는 영향)

  • 임진호;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.581-586
    • /
    • 1994
  • Effect of excess and deficiency of PbO on the sintering and electrical properties of tetragonal Pb(Zr0.5Ti0.5)O3 were investigated. Fired density revealed maximum value with 4 wt% of excess PbO, and decreased with increasing amount of both excess and deficient PbO. Grain size increased with excess PbO, and decreased with deficiency of PbO. It appeared that excess PbO forms a liquid phase to enhance grain growth and completely volatilizes after sintering, whereas ZrO2 particles formed in PbO-deficient PZT inhibit grain growth. The change in the values of the equivalent circuit elements of PZT corresponded well with thar of porosity formed by excess and deficiency of PbO; kp, Co and Cm decreased while Qm, Rm and Lm increased conosiderably with porosity. This change was more pronounced in PbO-deficient type probably due to change in Zr/Ti ratio of PZT.

  • PDF

Theoretical and Practical Aspects of Pb-Sn Alloy Plating (Pb-Sn 합금도금의 이론 및 실제적 경향)

  • Paik, Young-Nam
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.3
    • /
    • pp.161-166
    • /
    • 1979
  • Theoretical and practical aspects are investigated for electrochemical behavious, plating processes and the structures of electrodeposit of Pb-Sn binary alloy plating through numerous literatures in this report. The anodic and cathodic electrode reaction mechanisms of Pb and Sn could co-deposit and make Pb-Sn alloy deposit from the results of cathode current density-cathode potential curves of Pb, Sn and Pb-Sn alloys in fluoborate solutions. The compositions of the best alloy plating solutions are obtained for the purpose of bearing, anticorrosion and solder plating. In general, the casting anodes of Pb-Sn alloys are used, but separated anodes of Pb and Sn pure metal are used in order to obtain the fine compositions of Pb-Sn alloy deposits. The electrodeposits of Pb-Sn alloy are in nonequilibrium state and saturated solid solutions. Thus, ${\beta}$-phase (Sn-phase) is precipitated by heat treatment. The texture and structure of the electrodeposit are associated with the surface energies of deposit lattice planes and with the cathode polarization. The electrodeposit of Pb-Sn alloy is shown as lamellar structure.

  • PDF

Pyroelectric property of $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ ceramics for pyroelectric sensor application (초전센서 응용을 위한 $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ 세라믹계 초전특성)

  • 황학인;정종만;박준식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.667-672
    • /
    • 1998
  • Pyroelectric properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ ceramics prepared by the columbite precursor method have been investigated as a function of the sintering temperature in the range of $1000^{\circ}C$ to $1250^{\circ}C$. The $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ ceramics show typical relaxor ferroelectric behavior. The optimum condition for obtaining samples with high densities and improved pyroelectric properties occur at a sintering temperature of $1250^{\circ}C$ and sintering times of 2 hours. The $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ ceramics show the possibility for pyroelectric sensors with pyrostat.

  • PDF

Lead Stabilization in Soil Amended with Lime Waste: An Extended X-ray Absorption Fine Structure (EXAFS) Investigation

  • Lim, Jung Eun;Lee, Sang Soo;Yang, Jae E.;Ok, Yong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.443-450
    • /
    • 2014
  • To determine Pb species in soils following the immobilization process, sequential extraction has been used despite the possibility of overestimating Pb species from unintended reactions during chemical extraction. Meanwhile, the application of extended X-ray absorption fine structure (EXAFS) has been shown to provide a more precise result than chemical extraction. In this study, the immobilization of Pb in contaminated soils treated with liming materials such as oyster shell (OS) or eggshell (ES) was evaluated with thermodynamic modelling and EXAFS analysis. Thermodynamic modelling by visual MINTEQ predicted the precipitation of $Pb(OH)_2$ in OS and ES treated soils. In particular, the values of saturation index (SI) for $Pb(OH)_2$ in OS (SI=0.286) and ES (SI=0.453) treated soils were greater than in the control soil (SI=0.281). Linear combination fitting (LCF) analysis confirmed the presence of $C_{12}H_{10}O_{14}Pb_3$ (lead citrate, 44.7%) by citric acid from plant root, Pb-gibbsite (Pb adsorbed gibbsite, 26.4%), and Pb-kaolinite (Pb adsorbed kaolinite, 20.3%) in the control soil. On the other hand, $Pb(OH)_2$ (16.8%), Pb-gibbsite (39.3%), and Pb-kaolinite (25.6%) were observed in the OS treated soil and $Pb(OH)_2$ (55.2%) and Pb-gibbsite (33.8%) were also confirmed in the ES treated soil. Our results indicate that the treatment with OS and ES immobilizes Pb by adsorption of Pb onto the soil minerals as a result of the increase in soil negative charge and the formation of stable $Pb(OH)_2$ under high pH condition of soils.

Utilization of Waste Mn-ferrite for Treating Heavy Metals in Wastewater (Mn-ferrite의 중금속 흡착특성-폐 페라이트의 중금속폐수 처리 활용 가능성)

  • 이상훈;윤창주;이희란
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.381-385
    • /
    • 2003
  • We investigated possible application of waste ferrite in treating Cd and Pb in wastewater. Adsorption of Cd and Pb on Mn-Ferrite are influenced by several controlling factors such as contact time, heavy metal concentrations, pH and temperature. Both Cd and Pb achieved adsorption equilibrium within 5 minutes. Based upon this kinetic data, 24 hours of contact time was allowed for other experiment. The adsorption of Cd and Pb was high at high pH and high ion concentrations. The reaction was also affected by temperature. Adsorption isotherms fits well with the Freundlich isotherm equation. pH is the main controlling factor in Cd, Pb adsorption on the Mn-ferrite. Cd showed S type adsorption curve while Pb showed sorption edges, depending on the Pb concentrations.

Quantum Dot Sensitized Solar Cell Using PbS/ZnO Nanowires (황화납/산화아연 나노선을 이용한 양자점 감응형 태양전지)

  • Kim, Woo-Seok;Yong, Ki-Jung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.292-296
    • /
    • 2010
  • We fabricated quantum dot sensitized solar cells(QDSSC) using PbS as a sensitizer and measured the solar energy conversion efficiency. After growing ZnO nanowires on the substrate by low temperature ammonia solution reaction, PbS QDs were deposited on ZnO nanowires by SILAR(Successive ionic layer adsorption and reaction) method. The morphology and crystallinity of PbS/ZnO nanowires were studied by SEM and XRD. In this study, the maximum conversion efficiency of QDSSC using PbS was 0.075% at one sun, which was lower than that of QDSSC using other sensitizers. The reasons it showed relatively low efficiency are i) the probability of type-I band gap arrangement between ZnO and PbS, ii) disturbance of electron migration by the various-sized PbS band gap, iii) stability dip by the chemical reaction of PbS QDs with electrolyte. To solve these problems, researches about controlling the size distribution of PbS and new type electrolyte would be needed.

Effects of Pinus densiflora on soil chemical and microbial properties in Pb-contaminated forest soil

  • Kim, Sung-Hyun;Lee, In-Sook;Kang, Ho-Jeong
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.315-322
    • /
    • 2011
  • We investigated the effect of Pb uptake by Pinus densiflora and the Pb fraction in forest soil. We also investigated the change in soil physicochemical characteristics, microbial activity, and root exudates of Pinus densiflora in Pb-contaminated soils. Three-year-old pine seedlings were exposed to 500 mg/kg Pb for 12 months. The metal fractions were measured using sequential extraction procedures. Additionally, factors that affect solubility (three soil enzyme activities and amino acids of root exudate compounds) were also determined. The results showed that Pb contamination significantly decreased enzyme activities due to soil characteristics. In addition, organic matter, nitrate content, and Pb concentration were time dependent. The results indicate that changes in the Pb fraction affected Pb uptake by pine trees due to an increase in the exchangeable Pb fraction. The concentrations of organic acids were higher in Pb-spiked soil than those in control soil. Higher rhizosphere concentrations of oxalic acid resulted in increased Pb uptake from the soil. These results suggest that pine trees can change soil properties using root exudates due to differences in the metal fraction.

Prussian blue immobilization on various filter materials through Layer-by-Layer Assembly for effective cesium adsorption

  • Wi, Hyobin;Kim, Hyowon;Kang, Sung-Won;Hwang, Yuhoon
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Prussian blue (PB) is well known for its excellent $Cs^+$ ions adsorption capacity. Due to the high dispersibility of PB in aqueous phase, composite materials imbedding PB in supporting materials have been introduced as a solution. However, building PB particles inside porous supporting materials is still difficult, as PB particles are not fully formed and elute out to water. In this study, we suggest layer-by-layer (LBL) assembly to provide better immobilization of PB on supporting materials of poly vinyl alcohol sponge (PVA) and cellulose filter (CF). Three different PB attachment methods, ex-situ/in-situ/LBL assembly, were evaluated using PB leaching test as well as $Cs^+$ adsorption test. Changes of surface functionality and morphology during PB composite preparation protocols were monitored through Fourier transform infrared spectroscopy and scanning electron microscopy. The results indicate that LBL assembly led to better PB attachment on supporting materials, bringing less eluting PB particles in aqueous phase compared to other synthesis methodologies, such as ex-situ and in-situ synthesis. By enhancing the stability of the adsorbent, adsorption capacity of PVA-PB with LBL improved nine times and that of CF-PB improved over 20 times. Therefore, the results suggest that LBL assembly offers a better orientation for growing PB particles on porous supporting materials.

Effect of Lead(IV) Acetate on Procoagulant Activity in Human Red Blood Cells

  • Kim, Keun-Young;Lim, Kyung-Min;Shin, Jung-Hun;Noh, Ji-Yoon;Ahn, Jae-Bum;Lee, Da-Hye;Chung, Jin-Ho
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.175-180
    • /
    • 2009
  • Lead (Pb) is a ubiquitously occurring environmental heavy metal which is widely used in industry and human life. Possibly due to a global industrial expansion, recent studies have revealed the prevalent human exposure to Pb and increased risk of Pb toxicity. Once ingested by human, 95% of absorbed Pb is accumulated into erythrocytes and erythrocytes are known to be a prime target for Pb toxicity. Most of the studies were however, focused on $Pb^{2+}$ whereas the effects of $Pb^{4+}$, another major form of Pb on erythrocytes are poorly understood yet. In this study, we investigated and compared the effects of $Pb^{4+}$, $Pb^{2+}$ and other heavy metals on procoagulant activation of erythrocytes, an important factor for the participation of erythrocytes in thrombotic events in an effort to address the cardiovascular toxicity of $Pb^{4+}$. Freshly isolated erythrocytes from human were incubated with $Pb^{4+}$, $Pb^{2+}$, $Cd^{2+}$ and $Ag^+$ and the exposure of phosphatidylserine (PS), key marker for procoagulant activation was measured using flow cytometry. As a result, while $Cd^{2+}$ and $Ag^+$ did not affect PS exposure, $Pb^{4+}$ and $Pb^{2+}$ induced significantly PS exposure in a dose-dependent manner. Of a particular note, $Pb^{4+}$ induced PS exposure with a similar potency with $Pb^{2+}$. PS bearing microvesicle (MV), another important contributor to procoagulant activation was also generated by $Pb^{4+}$. These PS exposure and MV generation by $Pb^{4+}$ were well in line with the shape change of erythrocyte from normal discocytes to MV shedding echinocytes following $Pb^{4+}$ treatment. Meanwhile, nonspecific hemolysis was not observed suggesting the specificity of $Pb^{4+}$-induced PS exposure and MV generation. These results indicated that $Pb^{4+}$ could induce procoagulant activation of erythrocytes through PS exposure and MV generation, suggesting that $Pb^{4+}$ exposure might ultimately lead to increased thrombotic events.

Genetic phenomena for the pb and zu tolerance in plants (식물의 납과 아연의 내성에 관한 유전현상)

  • Yun, Jeoung-Ok;Lee, In-Sook
    • The Korean Journal of Ecology
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 1992
  • Pb, Zn tolerance of phaseolus multiflorus was investigated, based on the elongation of root and stem, pollen Germination and progeny quality in various pb, zn concentrations. The result obtained by water culture showed that the growth of roots and steams of phaseolus multiflorus from pb-zn mine site is less inhivited than that of the control site. The flower of phaseolus multiflorus from which pollen was taken were grown without added pb, zn and percent germination of pollen observed in a range of pb, zn concentrations. The percent germination of pollen from pb-zn mine site was higher than the control site. phaseolus multiflorus collected at a pb-zn mine site and the control site was site were grown at different pb, zn concentrations, its progeny was retreated with same concentrations of pb-zn mine site was more vigorous than the control site. thus, pb-zn tolerance was able to expressed in both pollen and sporophytes.

  • PDF