• 제목/요약/키워드: Payload test

검색결과 210건 처리시간 0.044초

Double Pulse Raman-Laser Induced Plasma Spectroscopy System for Space Exploration (우주 탐사를 위한 이중펄스 라만-레이저 유도 플라즈마 분광 시스템 개발 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제48권6호
    • /
    • pp.479-487
    • /
    • 2020
  • A new double-pulse laser system that combines Raman and laser induced plasma spectroscopy (LIPS) in a single unit is proposed. The study attempts to enhance the laser induced plasma signals while simultaneously extracting the desired molecular signals from Raman spectroscopy. In low pressure conditions such as the lunar atmosphere, the measuring of plasma emission is hard because of the low electron density and short persistence time causing a rapid plasma expansion. Furthermore, in the integration of the detecting system aimed at space exploration, the minimization of laser system is important in terms of the payload mass. Simultaneous molecular and atomic detection that gave highly resolved spectral data at pressure below 0.07 torr is demonstrated amongst eight rock samples test. The plasma stacking produced from the double-pulse laser enhanced the signal intensity of calcium and oxygen lines in calcite matrix by twofold, compared to a conventional LIPS.

Development of Long-Range RFID Reader System supporting Sensor Tag (센서태그를 지원하는 장거리 RFID 리더 시스템 개발)

  • Shin, Dong-Beom;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제34권6C호
    • /
    • pp.626-633
    • /
    • 2009
  • ISO/IEC/WD 24753 defines new modem specifications for a long-range RFID communications and application protocol for a sensor tag system. According to the standard, the frequency offset of the tag is 4%. In general wireless communications systems, it is known that a coherent receiver is superior to a non-coherent receiver. However, if the frequency offset is large, it is difficult to restore the original data accurately with a coherent receiver, and the performance of a coherent receiver is easily degraded. In this paper, a non-coherent receiver structure is adopted to solve the frequency offset problem of long-range RFID communications. We designed a frequency estimation block to find an optimal frequency from the received signal with 4% frequency offset and proposed a start frame delimiter (SFD) detection algorithm to determine the start position of the payload. The frequency estimation block finds the optimal frequency from the received signal using 9-correlators. And the SFD detection block searches the received signal to find the start position of the payload with dual correlator. We implemented a long-range RFID reader with the proposed methods and evaluated its performance in a wired/wireless test network. The implemented long-range RFID reader showed more superior performance than the commercial RFID reader in terms of recognition range.

Nondestructive Inspection of Launch Vehicle Structural Components (우주 발사체 구조 요소의 비파피검사)

  • Kong, Cheol-Won;Youn, Jong-Hoon;Park, Jae-Sung;Eun, Se-Won;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제29권4호
    • /
    • pp.331-337
    • /
    • 2009
  • Space launch vehicles require highly reliable, lightweight structures. It is thus important to monitor the structural health of these components with nondestructive inspections. In this paper, we studied an example of a nondestructive inspection that was partially applied to the manufacture and inspection of a launch vehicle. Ultrasonic tests, X-rays, tapping, and acoustic emissions comprised the inspection method. A payload fairing, high pressure tank, fastener part, and bonding part were used as hardware to be inspected. We proposed a quantitative standard for debonding inspection of the payload fairing and acoustic emission data for the proof test of the high pressure tank. We analyzed the fracture mode of the sandwich fastener part according to frequency changes. We also proposed a standard specimen for ultrasonic inspection of bonds of different materials. The present analyses and results provide data for evaluation of the launch operation sequence to ensure launch vehicles afford high reliability.

Development of the Earth Observation Camera of MIRIS

  • Lee, Dae-Hee;Han, Won-Yong;Park, Young-Sik;Park, Sung-Jun;Moon, Bong-Kon;Ree, Chang-Hee;Pyo, Jeong-Hyun;Jeong, Woong-Seob;Nam, Uk-Won;Lee, Duk-Hang;Park, Kwi-Jong;Bae, Soo-Ho;Rhee, Seung-Wu;Park, Jong-Oh;Kim, Geon-Hee;Yang, Sun-Choel;Kim, Young-Ju
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권3호
    • /
    • pp.225-232
    • /
    • 2011
  • We have designed and manufactured the Earth observation camera (EOC) of multi-purpose infrared imaging system (MIRIS). MIRIS is a main payload of the STSAT-3, which will be launched in late 2012. The main objective of the EOC is to test the operation of Korean IR technology in space, so we have designed the optical and mechanical system of the EOC to fit the IR detector system. We have assembled the flight model (FM) of EOC and performed environment tests successfully. The EOC is now ready to be integrated into the satellite system waiting for operation in space, as planned.

Design and Implementation on Frequency Synthesizer Qualification Model Level for SAR payload (위성 레이다용 QM급 주파수합성기 설계 및 제작)

  • Kim, Dongsik;Kim, Hyunchul;Heo, John;Kim, Wansik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제20권3호
    • /
    • pp.9-14
    • /
    • 2020
  • In this paper, Qualification Model of frequency synthesizer is designed for X-band SAR system and performed electrical and environment test. Designed frequency synthesizer generate 13.65 GHz with very low phase noise performance. The integrated phase noise from 10Hz to 1MHz is -37.91 dBc. IRF performances are analyzed according to phase noise and jitter. Also, thermal and structure analysis are achieved for stable operation in space environment. Designed frequency synthesizer is consist of 2 modules of 6U size and generate L-band, C-band, Ku-band. The result of this study would enhance the design ability of RF module and help the frequency synthesizer design for SAR payload system.

공력가열 시험설비 설계

  • Ok, Ho-Nam;Kim, In-Sun;Ra, Seung-Ho;Kim, Seong-Lyong;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.155-169
    • /
    • 2004
  • Space launch vehicles and reentry vehicles are exposed to extreme heating conditions due to high aerodynamic heating while flying at high Mach numbers in the atmosphere. To protect the vehicle itself or the payload from the aerodynamic heating, the thermal load imposed on the surface should be exactly predicted and proper thermal protection should be applied based on the prediction results. But this requires rigorous thermal analysis and testing to prevent loss of payload capacity caused by excessive heat shielding, and the amount of thermal protection material to be applied is determined through aerodynamic heating tests. Various design points to be considered to upgrade the prototype aerodynamic thermal simulation facility(ATSF) used for the KSR-series sounding rocket development to the one suitable for the KSLV(Korean Space Launch Vehicle)-series launch vehicle are considered in this research. The need and limitation for the facility are first considered, and the functions required for KSLV testing are determined. The specifications of the upgraded facility are briefly suggested and these results will be used for the future fabrication and installation of the facility.

  • PDF

VERTICAL OZONE DENSITY PROFILING BY UV RADIOMETER ONBOARD KSR-III

  • Hwang Seung-Hyun;Kim Jhoon;Lee Soo-Jin;Kim Kwang-Soo;Ji Ki-Man;Shin Myung-Ho;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.372-375
    • /
    • 2004
  • The UV radiometer payload was launched successfully from the west coastal area of Korea Peninsula aboard KSR-III on 28, Nov 2002. KSR-III was the Korean third generation sounding rocket and was developed as intermediate step to larger space launch vehicle with liquid propulsion engine system. UV radiometer onboard KSR-III consists of UV and visible band optical phototubes to measure the direct solar attenuation during rocket ascending phase. For UV detection, 4 channel of sensors were installed in electronics payload section and each channel has 255, 290, 310nm center wavelengths, respectively. 450nm channel was used as reference for correction of the rocket attitude during the flight. Transmission characteristics of all channels were calibrated precisely prior to the flight test at the Optical Lab. in KARI (Korea Aerospace Research Institute). During a total of 231s flight time, the onboard data telemetered to the ground station in real time. The ozone column density was calculated by this telemetry raw data. From the calculated column density, the vertical ozone profile over Korea Peninsula was obtained with sensor calibration data. Our results had reasonable agreements compared with various observations such as ground Umkhr measurement at Yonsei site, ozonesonde at Pohang site, and satellite measurements of HALOE and POAM. The sensitivity analysis of retrieval algorithm for parameters was performed and it was provided that significant error sources of the retrieval algorithm.

  • PDF

RF Compatibility Design & Verification for the SAR Satellite (SAR 위성의 고주파 호환성 설계 및 검증)

  • Won, Young-Jin;Park, Hong-Won;Moon, Hong-Youl;Woo, Sung-Hyun;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.37-48
    • /
    • 2011
  • Synthetic Aperture Radar(SAR) is a powerful and well established microwave remote sensing technique which enables high resolution measurement of Earth surface independent of weather conditions and sunlight illumination. KARI has been developing the first Korea SAR satellite which is scheduled to be launched in this year. The SAR satellite mainly consists of the bus platform and SAR payload. Most of all, the RF compatible design during the design phase and the verification of the RF compatibility during the testing phase is very important procedure for the in-orbit performance guarantee because the SAR payload radiates high power through the SAR antenna. In this study, the SAR satellite design criteria and verification procedure for the RF compatibility are described. In addition, this paper describes the RF full radiation testing (RF auto-compatibility testing) for the verification of the RF performance robustness, the testing configuration, and the test results.

Power System Optimization for Electric Hybrid Unmanned Drone (전동 하이브리드 무인 드론의 동력 계통 최적화)

  • Park, Jung-Hwan;Lyu, Hee-Gyeong;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제47권4호
    • /
    • pp.300-308
    • /
    • 2019
  • For drones to be used for industrial or agricultural applications, it is necessary to increase the payload and endurance. Currently, the payload and endurance are limited by the battery technology for electric powered drones. In addition, charging or replacing the batteries may not be a practical solution at the field that requires near continuous operation. In this paper, a procedure to optimize the power system of an electric hybrid drone that consists of an internal combustion engine, a generator, a battery, and electric motors is presented. The example drone for crop dusting is sized for easy transportation with a maximum takeoff weight of 200 kg. The two main rotors that are mechanically connected to the internal combustion engine provides most of the lift. The drone is controled by four electric motors that are driven by the generator. By analyzing the flow of the energy, a methodology to select the optimum propeller and motor among the commercially available models is described. Then, a procedure of finding the optimum operational condition along with the proper gear reduction ratios for the internal combustion engine based on the test data is presented.

Reversible Watermarking in JPEG Compression Domain (JPEG 압축 영역에서의 리버서블 워터마킹)

  • Cui, Xue-Nan;Choi, Jong-Uk;Kim, Hak-Il;Kim, Jong-Weon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • 제17권6호
    • /
    • pp.121-130
    • /
    • 2007
  • In this paper, we propose a reversible watermarking scheme in the JPEG compression domain. The reversible watermarking is useful to authenticate the content without the quality loss because it preserves the original content when embed the watermark information. In the internet, for the purpose to save the storage space and improve the efficiency of communication, digital image is usually compressed by JPEG or GIF. Therefore, it is necessary to develop a reversible watermarking in the JPEG compression domain. When the watermark is embedded, the lossless compression was used and the original image is recovered during the watermark extracting process. The test results show that PSNRs are distributed from 38dB to 42dB and the payload is from 2.5Kbits to 3.4Kbits where the QF is 75. Where the QF of the Lena image is varied from 10 to 99, the PSNR is directly proportional to the QF and the payload is around $1.6{\sim}2.8Kbits$.