• Title/Summary/Keyword: Pattern recognition system

Search Result 913, Processing Time 0.024 seconds

The Robust Pattern Recognition System for Flexible Manufacture Automation (유연 생산 자동화를 위한 Robust 패턴인식 시스템)

  • Wi, Young-Ryang;Kim, Mun-Hwa;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.223-240
    • /
    • 1998
  • The purpose of this paper is to develop the pattern recognition system with a 'Robust' concept to be applicable to flexible manufacture automation in practice. The 'Robust' concept has four meanings as follows. First, pattern recognition is performed invariantly in case the object to be recognized is translated, scaled, and rotated. Second, it must have strong resistance against noise. Third, the completely learned system is adjusted flexibly regardless of new objects being added. Finally, it has to recognize objects fast. To develop the proposed system, contouring, spectral analysis and Fuzzy ART neural network are used in this study. Contouring and spectral analysis are used in preprocessing stage, and Fuzzy ART is used in object classification stage. Fuzzy ART is an unsupervised neural network for solving the stability-plasticity dilemma.

  • PDF

The Virtual Robot Arm Control Method by EMG Pattern Recognition using the Hybrid Neural Network System (혼합형 신경회로망을 이용한 근전도 패턴 분류에 의한 가상 로봇팔 제어 방식)

  • Jung, Kyung-Kwon;Kim, Joo-Woong;Eom, Ki-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1779-1785
    • /
    • 2006
  • This paper presents a method of virtual robot arm control by EMG pattern recognition using the proposed hybrid system. The proposed hybrid system is composed of the LVQ and the SOFM, and the SOFM is used for the preprocessing of the LVQ. The SOFM converts the high dimensional EMG signals to 2-dimensional data. The EMG measurement system uses three surface electrodes to acquire the EMG signal from operator. Six hand gestures can be classified sufficiently by the proposed hybrid system. Experimental results are presented that show the effectiveness of the virtual robot arm control by the proposed hybrid system based classifier for the recognition of hand gestures from EMG signal patterns.

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

Analysis of Real-Time Estimation Method Based on Hidden Markov Models for Battery System States of Health

  • Piao, Changhao;Li, Zuncheng;Lu, Sheng;Jin, Zhekui;Cho, Chongdu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.217-226
    • /
    • 2016
  • A new method is proposed based on a hidden Markov model (HMM) to estimate and analyze battery states of health. Battery system health states are defined according to the relationship between internal resistance and lifetime of cells. The source data (terminal voltages and currents) can be obtained from vehicular battery models. A characteristic value extraction method is proposed for HMM. A recognition framework and testing datasets are built to test the estimation rates of different states. Test results show that the estimation rates achieved based on this method are above 90% under single conditions. The method achieves the same results under hybrid conditions. We can also use the HMMs that correspond to hybrid conditions to estimate the states under a single condition. Therefore, this method can achieve the purpose of the study in estimating battery life states. Only voltage and current are used in this method, thereby establishing its simplicity compared with other methods. The batteries can also be tested online, and the method can be used for online prediction.

Improved Pattern Recoginition Coding System of a Handwriting Character with 3D (3D Magnetic Ball을 이용한 필기체 인식 향상 Coding System)

  • Sim, Kyu Seung;Lee, Jae Hong;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.10-19
    • /
    • 2013
  • This Paper proposed the development of new magnetic sensor and recognition system to expendite pattern recognition of a handwriting character. Received character graphics should be performed the session and balancing and no extraction of end points, bend points and juntions separately. The Artifical intelligence algorithm is adapted to structure snalysis and recognition process by individual basic letter dictionary except for the handwriing character graphic dictionaryimproving error of recognition algorithm and enomous dictionary for generalization. In this Paper, recognition rate of the received character are compared with pre registered character at letter dictionary for performance test of magnetic ball sensor. As a result of unicode conversion and eomparison, the artificial intelligence study have recognition rate more than 95% at initial recognition rate of 70%.

2D Design Feature Recognition using Expert System (전문가 시스템을 이용한 2차원 설계 특징형상의 인식)

  • 이한민;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2001
  • Since a great number of 2D engineering drawings are being used in industry and at the same time 3D CAD becomes popular in recent years, we need to reconstruct 3D CAD models from 2D legacy drawings. In this thesis, a combination of a feature recognition method and an expert system is suggested for the 3D solid model reconstruction. Modeling primitives of 3D CAD systems are recognized and constructed by using the pattern matching technique of the features modeling. Additional information for the 3D model reconstruction can be generated by extracting symbols or text entities which are related to form entities. For complex and indefinite cases which cannot be solved by the process of feature recognition, an expert system with a rule base has been used for decision-making. A 3D reconstruction system which recognizes 2D DXF drawing files has been implemented where models composed with protrusions, holes, and cutouts can be handled.

  • PDF

An approach to visual pattern recognition by neural network system

  • Hatakeyama, Yasuhiro;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.61-64
    • /
    • 1992
  • In this paper, a visual pattern recognition system is proposed, which can recognize both a pattern and its location. This system, referred to as the expanded neocognitron, has the following capabilities: (1) A higher performance in extraction of features, and (2) A new capability for recognizing the locations of patterns. This system adopts the learning and recognizing mechanism of the neocognitron. First, the ability to classify pattern is enhanced by improving the mechanisms of feature extraction and learning algorithm. Second, the function of detecting the location of each pattern is realized by developing an architecture which does not reduce structure, i.e., the unit density is constant all the way from the input stage to the output stage.

  • PDF

A Study on the Realization of Korean Digits Recognition System Using the Simplified DTW Method (간소화된 DTW방식을 이용한 한국어 숫자음 인식기 구현에 관한 연구)

  • 안병수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.66-70
    • /
    • 1992
  • This paper describes the simplified DTW algorithm for real time korean digit recognition and construct the digit recognition system using that algorithm. The DTW algorithm which is used nowadays have problems on real time recognition because of its massive computation. But, simplified DTW algorithm, which is proposed in this paper, solved these problems. In the case of single syllable, we use the characteristic of uniform distribution of epansion and contraction on time ais, compare distance of input pattern and reference pattern using constrainedly restricted path. As a result, we can reduce a great deal of computation and achieved that the real time korean digit recognition system.

  • PDF

Rotation-invariant pattern recognition system with constrained neural network (회전량에 불변인 제한 신경회로망을 이용한 패턴인식)

  • 나희승;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.619-623
    • /
    • 1992
  • In pattern recognition, the conventional neural networks contain a large number of weights and require considerable training times and preprocessor to classify a transformed patterns. In this paper, we propose a constrained pattern recognition method which is insensitive to rotation of input pattern by various degrees and does not need any preprocessing. Because these neural networks can not be trained by the conventional training algorithm such as error back propagation, a novel training algorithm is suggested. As such a system is useful in problem related to calssify overse side and reverse side of 500 won coin. As an illustrative example, identification problem of overse and reverse side of 500 won coin is shown.

  • PDF

Improvement of Bit Recognition Rate for Color QR Codes By Multiplexing Color and Pattern Information (색 및 패턴 정보 다중화를 이용한 칼라 QR코드의 비트 인식률 개선)

  • Kim, Jin-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1012-1019
    • /
    • 2021
  • Currently, since the black-white QR (Quick Response) codes have limited storage capacity, color QR codes have been actively being studied. By multiplexing 3 colors, the color QR codes can allow the code capacity to be increased by three times, however, the color multiplexing brings about the possibility of crosstalk and noises in the acquisition process of the final image, incurring the decrease of bit-recognition rate. In order to improve the bit recognition rate, while keeping the storage capacity high, this paper proposes a new type of color QR code which uses the pattern information as well as the color information, and then analyzes how to increase the bit recognition rate. For this aim, the paper presents an efficient system which extracts embedded information from color QR code and then, through practical experiments, it is shown that the proposed color QR codes improves the bit recognition rate and are useful for commercial applications, compared to the conventional color codes.