• Title/Summary/Keyword: Pattern recognition and machine learning

Search Result 111, Processing Time 0.033 seconds

Fast Face Gender Recognition by Using Local Ternary Pattern and Extreme Learning Machine

  • Yang, Jucheng;Jiao, Yanbin;Xiong, Naixue;Park, DongSun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1705-1720
    • /
    • 2013
  • Human face gender recognition requires fast image processing with high accuracy. Existing face gender recognition methods used traditional local features and machine learning methods have shortcomings of low accuracy or slow speed. In this paper, a new framework for face gender recognition to reach fast face gender recognition is proposed, which is based on Local Ternary Pattern (LTP) and Extreme Learning Machine (ELM). LTP is a generalization of Local Binary Pattern (LBP) that is in the presence of monotonic illumination variations on a face image, and has high discriminative power for texture classification. It is also more discriminate and less sensitive to noise in uniform regions. On the other hand, ELM is a new learning algorithm for generalizing single hidden layer feed forward networks without tuning parameters. The main advantages of ELM are the less stringent optimization constraints, faster operations, easy implementation, and usually improved generalization performance. The experimental results on public databases show that, in comparisons with existing algorithms, the proposed method has higher precision and better generalization performance at extremely fast learning speed.

A Review of Facial Expression Recognition Issues, Challenges, and Future Research Direction

  • Yan, Bowen;Azween, Abdullah;Lorita, Angeline;S.H., Kok
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.125-139
    • /
    • 2023
  • Facial expression recognition, a topical problem in the field of computer vision and pattern recognition, is a direct means of recognizing human emotions and behaviors. This paper first summarizes the datasets commonly used for expression recognition and their associated characteristics and presents traditional machine learning algorithms and their benefits and drawbacks from three key techniques of face expression; image pre-processing, feature extraction, and expression classification. Deep learning-oriented expression recognition methods and various algorithmic framework performances are also analyzed and compared. Finally, the current barriers to facial expression recognition and potential developments are highlighted.

Chip type discrimination by pattern recognition technique (패턴인식 기술에 의한 칩형태 판별)

  • Kang, Jong-Pyo;Choi, Man-Sung;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.32-38
    • /
    • 1988
  • Apaptive cintrol of machine tool is aimed to change cutting state satis- factorily without aid of a machine operator, if the cuting state is abnomal such as formation of tangled ribbon type chip, built-up edge and generation of chattering and so on. Among these the recognition of chip type is one of the most important since it has imlications relate to : 1. Safety of operator 2. Stoppage of work due to entanglment in tool and workpiece of chip 3. Problem of producted chip control In this paper the chip type is discriminatied by the pattern recognition technique. It is found that the power spectrum of cutting force for each chip type has it's own special pattern. Linear discriminant function for the recognition of the chip type is obtained by learning process. The discriminant function can be the basis of adaptive control for the rate of success of recognition by pattern recognition technique is at leasthigher than 83%.

  • PDF

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

Machine Fault Diagnosis Method based on DWT Power Spectral Density using Multi Patten Recognition (다중 패턴 인식 기법을 이용한 DWT 전력 스펙트럼 밀도 기반 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min;Vununu, Caleb;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1233-1241
    • /
    • 2019
  • The goal of the sound-based mechanical fault diagnosis technique is to automatically find abnormal signals in the machine using acoustic emission. Conventional methods of using mathematical models have been found to be inaccurate due to the complexity of industrial mechanical systems and the existence of nonlinear factors such as noise. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose an automatic fault diagnosis method using discrete wavelet transform and power spectrum density using multi pattern recognition. First, we perform DWT-based filtering analysis for noise cancelling and effective feature extraction. Next, the power spectral density(PSD) is performed on each subband of the DWT in order to effectively extract feature vectors of sound. Finally, each PSD data is extracted with the features of the classifier using multi pattern recognition. The results show that the proposed method can not only be used effectively to detect faults as well as apply to various automatic diagnosis system based on sound.

Automatic Machine Fault Diagnosis System using Discrete Wavelet Transform and Machine Learning

  • Lee, Kyeong-Min;Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1299-1311
    • /
    • 2017
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines using the sounds emitted by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We present here an automatic fault diagnosis system of hand drills using discrete wavelet transform (DWT) and pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The diagnosis system consists of three steps. Because of the presence of many noisy patterns in our signals, we first conduct a filtering analysis based on DWT. Second, the wavelet coefficients of the filtered signals are extracted as our features for the pattern recognition part. Third, PCA is performed over the wavelet coefficients in order to reduce the dimensionality of the feature vectors. Finally, the very first principal components are used as the inputs of an ANN based classifier to detect the wear on the drills. The results show that the proposed DWT-PCA-ANN method can be used for the sounds based automated diagnosis system.

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

Using Higher Order Neuron on the Supervised Learning Machine of Kohonen Feature Map (고차 뉴런을 이용한 교사 학습기의 Kohonen Feature Map)

  • Jung, Jong-Soo;Hagiwara, Masafumi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.277-282
    • /
    • 2003
  • In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.

Identifying the Effects of Repeated Tasks in an Apartment Construction Project Using Machine Learning Algorithm (기계적 학습의 알고리즘을 이용하여 아파트 공사에서 반복 공정의 효과 비교에 관한 연구)

  • Kim, Hyunjoo
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Learning effect is an observation that the more times a task is performed, the less time is required to produce the same amount of outcomes. The construction industry heavily relies on repeated tasks where the learning effect is an important measure to be used. However, most construction durations are calculated and applied in real projects without considering the learning effects in each of the repeated activities. This paper applied the learning effect to the repeated activities in a small sized apartment construction project. The result showed that there was about 10 percent of difference in duration (one approach of the total duration with learning effects in 41 days while the other without learning effect in 36.5 days). To make the comparison between the two approaches, a large number of BIM based computer simulations were generated and useful patterns were recognized using machine learning algorithm named Decision Tree (See5). Machine learning is a data-driven approach for pattern recognition based on observational evidence.