• Title/Summary/Keyword: Pattern of Errors

Search Result 387, Processing Time 0.024 seconds

A Study on the WECPNL Application Method to Estimate the Measured data by using the Simulated value for Military Aircraft (군용항공기의 예측 최고소음도와 측정된 최고소음도의 비교를 통한 WECPNL의 산정에 관한 연구)

  • Kim, Bong-Suk;Chang, Seo-Il;Lee, Yeon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.604-608
    • /
    • 2007
  • The INM simulation program is used to estimate the condition of the exposed area to the noise near a military airport in Korea. $WECPNL_k$, the evaluation unit of korean airport noise, is different from the ICAO $WECPNL_I$ that is used in the simulation program. Therefore, it is inappropriate to compare these units each other directly. This study presents method of comparison between them by using $LA_{MAX}$. The aircraft events are classified into three classes, as departure, overfly and approach. In result, the measurement and simulation seemed to be similar at departure and approach pattern. However, overfly pattern had higher errors between measurement and simulation. Finally, it is necessary to examine the method to determine flight events and duration for the $WECPNL_k$ application.

  • PDF

Scleral Diagnostic System Implementation with Color and Blood Vessel Sign Pattern Code Generations (컬러와 혈관징후패턴 코드 생성에 의한 공막진단시스템 구현)

  • Ryu, Kwang Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3029-3034
    • /
    • 2014
  • The paper describes the scleral diagnostic system implementation for human eyes by using the scleral color code and vessels sign pattern code generations. The system is based on the high performance DSP image signal processor, programmable gain control for preprocessing and RISC SD frames storage. RGB image signals are optimized by PGC, the edge image is detected form the gray image converted. The processing algorithms are executed by scleral color code generation and scleral vessels sign pattern code creation for discriminating and matching. The scleral symptomatic color code is generated by YCbCr values at memory map tolerated and the vessel sign pattern code is created by digitizing the 24 clock and 13 ring zones, overlay matching and tolerances. The experimental results for performance are that the system runs 40ms, and the color and pattern for diagnostic errors are around 20% and 24% on average. The system and technique enable a scleral diagnosis with subdividing the patterns and patient database.

Error Compensation Algorithm for Higher Surface Accuracy of Freeform Mirrors Based On the Method of Least Squares

  • Jeong, Byeongjoon;Pak, Soojong;Kim, Sanghyuk;Lee, Kwang Jo;Chang, Seunghyuk;Kim, Geon Hee;Hyun, Sangwon;Jeon, Min Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2015
  • Off-axis reflective optical systems have attractive advantages relative to their on-axis or refractive counterparts, for example, zero chromatic aberration, no obstruction, and a wide field of view. For the efficient operation of off-axis reflective system, the surface accuracy of freeform mirrors should be higher than the order of wavelengths at which the reflective optical systems operate. Especially for applications in shorter wavelength regions, such as visible and ultraviolet, higher surface accuracy of freeform mirrors is required to minimize the light scattering. In this work, we propose the error compensation algorithm (ECA) for the correction of wavefront errors on freeform mirrors. The ECA converts a form error pattern into polynomial expression by fitting a least square method. The error pattern is measured by using an ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.). The measured data are fitted by two fitting models: Sag (Delta Z) data model and form (Z) data model. To evaluate fitting accuracy of these models, we compared the fitted error patterns with the measured error pattern.

  • PDF

Constrained High Accuracy Stereo Reconstruction Method for Surgical Instruments Positioning

  • Wang, Chenhao;Shen, Yi;Zhang, Wenbin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2679-2691
    • /
    • 2012
  • In this paper, a high accuracy stereo reconstruction method for surgery instruments positioning is proposed. Usually, the problem of surgical instruments reconstruction is considered as a basic task in computer vision to estimate the 3-D position of each marker on a surgery instrument from three pairs of image points. However, the existing methods considered the 3-D reconstruction of the points separately thus ignore the structure information. Meanwhile, the errors from light variation, imaging noise and quantization still affect the reconstruction accuracy. This paper proposes a method which takes the structure information of surgical instruments as constraints, and reconstructs the whole markers on one surgical instrument together. Firstly, we calibrate the instruments before navigation to get the structure parameters. The structure parameters consist of markers' number, distances between each markers and a linearity sign of each instrument. Then, the structure constraints are added to stereo reconstruction. Finally, weighted filter is used to reduce the jitter. Experiments conducted on surgery navigation system showed that our method not only improve accuracy effectively but also reduce the jitter of surgical instrument greatly.

A Study on the Calibration of Shape Measurement System Using Digital moire (Digital moire 형상측정 시스템의 보정에 관한 연구)

  • 김도훈;유원재;박낙규;강영준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.255-259
    • /
    • 2003
  • Moire topography method isa well-known non-contacting 3-D measurement method as afast non-contact test for three-dimension shape measuring method. Recently, it's important to study the automatic three-dimension measurement by moire topography because it is frequently applied to the reverse engineering , the medical , the entertainment fields. Three-dimension measurement using projection of moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, the classical moire method is computerized-so called digital moire when a virtual grating pattern is projected on a surface, the captured image by the CCD camera has three-dimension information of the objects. The moire image can be obtained through a simple image processing and a reference grating pattern. and it provides similar results without physical grating pattern. digital projection moire topography turn out to be very effective for the three-dimension measurement of objects. Using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the four-three step algorithm method instead of the same step in the phase shifting of different pitch.

  • PDF

Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis (집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식)

  • Yeom, Seok-Won;Lee, Dong-Su;Son, Jung-Young;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1111-1116
    • /
    • 2009
  • In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.

Future Changes in Atmosphere Teleconnection over East Asia and North Pacific associated with ENSO in CMIP5 Models (CMIP5 모형에서 나타난 겨울철 동아시아와 북태평양 지역의 엘니뇨 원격상관의 미래변화)

  • Kim, Sunyong;Kug, Jong-Seong
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.389-397
    • /
    • 2015
  • The changes in the teleconnection associated with El Nin?o-Southern Oscillation (ENSO) over the East Asia and North Pacific under greenhouse warming are analyzed herein by comparing the Historical run (1970/1971~1999/2000) and the Representative Concentration Pathway (RCP) 4.5 run with 31 climate models, participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). It is found that CMIP5 models have diverse systematic errors in simulating the ENSO teleconnection pattern from model to model. Therefore, we select 21 models based on the models' performance in simulating teleconnection pattern in the present climate. It is shown that CMIP5 models tend to project an overall weaker teleconnection pattern associated with ENSO over East Asia in the future climate than that in the present climate. It can be also noted that the cyclonic flow over the North Pacific is weakened and shifted eastward. However, uncertainties for the ENSO teleconnection changes still exist, suggesting that much consistent agreements on this future teleconnections associated with ENSO should be taken in a further study.

Analysis of changes in dose distribution due to respiration during IMRT

  • Shin, Jung-Suk;Shin, Eun-Hyuk;Han, Young-Yih;Ju, Sang-Gyu;Kim, Jin-Sung;Ahn, Sung-Hwan;Kim, Tae-Gyu;Jeong, Bae-Kwon;Park, Hee-Chul;Ahn, Young-Chan;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.29 no.3
    • /
    • pp.206-213
    • /
    • 2011
  • Purpose: Intensity modulated radiation therapy (IMRT) is a high precision therapy technique that can achieve a conformal dose distribution on a given target. However, organ motion induced by respiration can result in significant dosimetric error. Therefore, this study explores the dosimetric error that result from various patterns of respiration. Materials and Methods: Experiments were designed to deliver a treatment plan made for a real patient to an in-house developed motion phantom. The motion pattern; the amplitude and period as well as inhale-exhale period, could be controlled by in-house developed software. Dose distribution was measured using EDR2 film and analysis was performed by RIT113 software. Three respiratory patterns were generated for the purpose of this study; first the 'even inhale-exhale pattern', second the slightly long exhale pattern (0.35 seconds longer than inhale period) named 'general signal pattern', and third a 'long exhale pattern' (0.7 seconds longer than inhale period). One dimensional dose profile comparisons and gamma index analysis on 2 dimensions were performed. Results: In one-dimensional dose profile comparisons, 5% in the target and 30% dose difference at the boundary were observed in the long exhale pattern. The center of high dose region in the profile was shifted 1 mm to inhale (caudal) direction for the 'even inhale-exhale pattern', 2 mm and 5 mm shifts to exhale (cranial) direction were observed for 'slightly long exhale pattern' and 'long exhale pattern', respectively. The areas of gamma index >1 were 11.88 %, 15.11%, and 24.33% for 'even inhale-exhale pattern', 'general pattern', and 'long exhale pattern', respectively. The long exhale pattern showed largest errors. Conclusion: To reduce the dosimetric error due to respiratory motions, controlling patient's breathing to be closer to even inhaleexhale period is helpful with minimizing the motion amplitude.

Background Subtraction Algorithm by Using the Local Binary Pattern Based on Hexagonal Spatial Sampling (육각화소 기반의 지역적 이진패턴을 이용한 배경제거 알고리즘)

  • Choi, Young-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.533-542
    • /
    • 2008
  • Background subtraction from video data is one of the most important task in various realtime machine vision applications. In this paper, a new scheme for background subtraction based on the hexagonal pixel sampling is proposed. Generally it has been found that hexagonal spatial sampling yields smaller quantization errors and remarkably improves the understanding of connectivity. We try to apply the hexagonally sampled image to the LBP based non-parametric background subtraction algorithm. Our scheme makes it possible to omit the bilinear pixel interpolation step during the local binary pattern generation process, and, consequently, can reduce the computation time. Experimental results revealed that our approach based on hexagonal spatial sampling is very efficient and can be utilized in various background subtraction applications.

A Study on the Test Strategy of Digital Circuit Board in the Production Line Based on Parallel Signature Analysis Technique (PSA 기법에 근거한 생산라인상의 디지털 회로 보오드 검사전략에 대한 연구)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.768-775
    • /
    • 2004
  • The SSA technique in the digital circuit test is required to be repeated the input pattern stream to n bits output nodes n times in case of using a multiplexor. Because the method adopting a parallel/serial bit convertor to remove this inefficiency has disadvantage of requiring the test time n times for a pattern, the test strategy is required, which can enhance the test productivity by reducing the test time based on simplified fault detection mechanism. Accordingly, this paper proposes a test strategy which enhances the test productivity and efficiency by appling PAS (Parallel Signature Analysis) technique to those after analyzing the structure and characteristics of the digital devices including TTL and CMOS family ICs as well as ROM and RAM. The PSA technique identifies the faults by comparing the reminder from good device with reminder from the tested device. At this time, the reminder is obtained by enforcing the data stream obtained from output pins of the tested device on the LFSR(Linear Feedback Shift Resister) representing the characteristic equation. Also, the method to obtain the optimal signature analyzer is explained by furnishing the short bit input streams to the long bit input streams to the LFSR having 8, 12, 16, 20bit input/output pins and by analyzing the occurring probability of error which is impossible to detect. Finally, the effectiveness of the proposed test strategy is verified by simulating the stuck at 1 errors or stuck at 0 errors for several devices on typical 8051 digital board.