• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.023 seconds

Study of the effective use pattern using Data Mining in a mobile grid (모바일 그리드에서 데이터마이닝을 이용한 효율적인 사용자 패턴 연구)

  • Kim, Hyu Chan;Kim, Mi Jung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.23-32
    • /
    • 2013
  • The purpose of this study is to make effective mobile grid considered general environment, which can be summarized as irregular mobility, service exploration, data sharing, variety of machines, limit to the battery duration, etc. The data was extracted from the Dartmouth College. We analysed mobile use pattern of a specific group and applied pattern using hybrid method. As a result, we could adjust infra usage effectively and appropriately and cost cutting and increase satisfaction of user. In this study, by applying weighting method based on access time interval, we analysed use pattern added time variation with association rule during users in mobile grid environment. We proposed more stable way to manage patterns in a mobile grid environment that is being used as a hybrid form to process the data value received from the server in real time. Further studies are needed to get appropriate use pattern by group using use patterns of various groups.

Fault Pattern Analysis and Restoration Prediction Model Construction of Pole Transformer Using Data Mining Technique (데이터마이닝 기법을 이용한 주상변압기 고장유형 분석 및 복구 예측모델 구축에 관한 연구)

  • Hwang, Woo-Hyun;Kim, Ja-Hee;Jang, Wan-Sung;Hong, Jung-Sik;Han, Deuk-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1507-1515
    • /
    • 2008
  • It is essential for electric power companies to have a quick restoration system of the faulted pole transformers which occupy most of transformers to supply stable electricity. However, it takes too much time to restore it when a transformer is out of order suddenly because we now count on operator in investigating causes of failure and making decision of recovery methods. This paper presents the concept of 'Fault pattern analysis and Restoration prediction model using Data mining techniques’, which is based on accumulated fault record of pole transformers in the past. For this, it also suggests external and internal causes of fault which influence the fault pattern of pole transformers. It is expected that we can reduce not only defects in manufacturing procedure by upgrading quality but also the time of predicting fault patterns and recovering when faults occur by using the result.

An Analysis Scheme Design of Customer Spending Pattern using Text Mining (텍스트 마이닝을 이용한 소비자 소비패턴 분석 기법 설계)

  • Jeong, Eun-Hee;Lee, Byung-Kwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2018
  • In this paper, we propose an analysis scheme of customer spending pattern using text mining. In proposed consumption pattern analysis scheme, first we analyze user's rating similarity using Pearson correlation, second we analyze user's review similarity using TF-IDF cosine similarity, third we analyze the consistency of the rating and review using Sendiwordnet. And we select the nearest neighbors using rating similarity and review similarity, and provide the recommended list that is proper with consumption pattern. The precision of recommended list are 0.79 for the Pearson correlation, 0.73 for the TF-IDF, and 0.82 for the proposed consumption pattern. That is, the proposed consumption pattern analysis scheme can more accurately analyze consumption pattern because it uses both quantitative rating and qualitative reviews of consumers.

Routing Relevant Data to Group Mobile Users by Mining Social Trajectory Pattern

  • Cho, Hyunjeong;Park, Yourim;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.934-936
    • /
    • 2013
  • A routing scheme for a group of mobile users for wireless ad-hoc networks is presented. The proposed scheme mines social activity patterns from wireless traces, and exploits social user group for efficient data routing among users based on a data publish approach. Simulation results based on real-world wireless traces show that our routing scheme reduces routing cost for a large mobile user group with a factor of 1.8 compared to a baseline counterpart.

High Utility Itemset Mining by Using Binary PSO Algorithm with V-shaped Transfer Function and Nonlinear Acceleration Coefficient Strategy

  • Tao, Bodong;Shin, Ok Keun;Park, Hyu Chan
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • The goal of pattern mining is to identify novel patterns in a database. High utility itemset mining (HUIM) is a research direction for pattern mining. This is different from frequent itemset mining (FIM), which additionally considers the quantity and profit of the commodity. Several algorithms have been used to mine high utility itemsets (HUIs). The original BPSO algorithm lacks local search capabilities in the subsequent stage, resulting in insufficient HUIs to be mined. Compared to the transfer function used in the original PSO algorithm, the V-shaped transfer function more sufficiently reflects the probability between the velocity and position change of the particles. Considering the influence of the acceleration factor on the particle motion mode and trajectory, a nonlinear acceleration strategy was used to enhance the search ability of the particles. Experiments show that the number of mined HUIs is 73% higher than that of the original BPSO algorithm, which indicates better performance of the proposed algorithm.

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

Clustering Algorithm using the DFP-Tree based on the MapReduce (맵리듀스 기반 DFP-Tree를 이용한 클러스터링 알고리즘)

  • Seo, Young-Won;Kim, Chang-soo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.23-30
    • /
    • 2015
  • As BigData is issued, many applications that operate based on the results of data analysis have been developed, typically applications are products recommend service of e-commerce application service system, search service on the search engine service and friend list recommend system of social network service. In this paper, we suggests a decision frequent pattern tree that is combined the origin frequent pattern tree that is mining similar pattern to appear in the data set of the existing data mining techniques and decision tree based on the theory of computer science. The decision frequent pattern tree algorithm improves about problem of frequent pattern tree that have to make some a lot's pattern so it is to hard to analyze about data. We also proposes to model for a Mapredue framework that is a programming model to help to operate in distributed environment.

Trend-based Sequential Pattern Discovery from Time-Series Data (시계열 데이터로부터의 경향성 기반 순차패턴 탐색)

  • 오용생;이동하;남도원;이전영
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.27-45
    • /
    • 2001
  • Sequential discovery from time series data has mainly concerned about events or item sets. Recently, the research has stated to applied to the numerical data. An example is sensor information generated by checking a machine state. The numerical data hardly have the same valuers while making patterns. So, it is important to extract suitable number of pattern features, which can be transformed to events or item sets and be applied to sequential pattern mining tasks. The popular methods to extract the patterns are sliding window and clustering. The results of these methods are sensitive to window sine or clustering parameters; that makes users to apply data mining task repeatedly and to interpret the results. This paper suggests the method to retrieve pattern features making numerical data into vector of an angle and a magnitude. The retrieved pattern features using this method make the result easy to understand and sequential patterns finding fast. We define an inclusion relation among pattern features using angles and magnitudes of vectors. Using this relation, we can fad sequential patterns faster than other methods, which use all data by reducing the data size.

  • PDF

Searching Sequential Patterns by Approximation Algorithm (근사 알고리즘을 이용한 순차패턴 탐색)

  • Sarlsarbold, Garawagchaa;Hwang, Young-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.29-36
    • /
    • 2009
  • Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence database, is an important data mining problem with broad applications. Since a sequential pattern in DNA sequences can be a motif, we studied to find sequential patterns in DNA sequences. Most previously proposed mining algorithms follow the exact matching with a sequential pattern definition. They are not able to work in noisy environments and inaccurate data in practice. Theses problems occurs frequently in DNA sequences which is a biological data. We investigated approximate matching method to deal with those cases. Our idea is based on the observation that all occurrences of a frequent pattern can be classified into groups, which we call approximated pattern. The existing PrefixSpan algorithm can successfully find sequential patterns in a long sequence. We improved the PrefixSpan algorithm to find approximate sequential patterns. The experimental results showed that the number of repeats from the proposed method was 5 times more than that of PrefixSpan when the pattern length is 4.

A Hybrid Data Mining Technique Using Error Pattern Modeling (오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.