• Title/Summary/Keyword: Pattern mining

Search Result 624, Processing Time 0.024 seconds

The Goods Recommendation System based on modified FP-Tree Algorithm (변형된 FP-Tree를 기반한 상품 추천 시스템)

  • Kim, Jong-Hee;Jung, Soon-Key
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.205-213
    • /
    • 2010
  • This study uses the FP-tree algorithm, one of the mining techniques. This study is an attempt to suggest a new recommended system using a modified FP-tree algorithm which yields an association rule based on frequent 2-itemsets extracted from the transaction database. The modified recommended system consists of a pre-processing module, a learning module, a recommendation module and an evaluation module. The study first makes an assessment of the modified recommended system with respect to the precision rate, recall rate, F-measure, success rate, and recommending time. Then, the efficiency of the system is compared against other recommended systems utilizing the sequential pattern mining. When compared with other recommended systems utilizing the sequential pattern mining, the modified recommended system exhibits 5 times more efficiency in learning, and 20% improvement in the recommending capacity. This result proves that the modified system has more validity than recommended systems utilizing the sequential pattern mining.

Effective eCRM using prediction function of Data Mining (Data Mining의 예측기능을 이용한 효과적인 eCRM)

  • Kang Rae-Goo;Kim Seung-Eon;Jung Chai-Yeoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1039-1042
    • /
    • 2006
  • Because many corporations computerize process figure enemy who is introducing eCRM fast and are used mainly at past by purpose to detect and analyze and forecast systematic analysis of customer information and various pattern of customer recently, ordinary peoples are trend that is alternated gradually by data mining that can drawand forecast result of good quality easily. Field that this data mining is used representatively is eCRM. In this treatise customer data of A discount store and sale data of 1 years experimenting that forecast customer contribution to base next year through data mining actuality data and data mining through comparison with predicted data are how effective to eCRM prove.

  • PDF

Violation Pattern Analysis for Good Manufacturing Practice for Medicine using t-SNE Based on Association Rule and Text Mining (우수 의약품 제조 기준 위반 패턴 인식을 위한 연관규칙과 텍스트 마이닝 기반 t-SNE분석)

  • Jun-O, Lee;So Young, Sohn
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.717-734
    • /
    • 2022
  • Purpose: The purpose of this study is to effectively detect violations that occur simultaneously against Good Manufacturing Practice, which were concealed by drug manufacturers. Methods: In this study, we present an analysis framework for analyzing regulatory violation patterns using Association Rule Mining (ARM), Text Mining, and t-distributed Stochastic Neighbor Embedding (t-SNE) to increase the effectiveness of on-site inspection. Results: A number of simultaneous violation patterns was discovered by applying Association Rule Mining to FDA's inspection data collected from October 2008 to February 2022. Among them there were 'concurrent violation patterns' derived from similar regulatory ranges of two or more regulations. These patterns do not help to predict violations that simultaneously appear but belong to different regulations. Those unnecessary patterns were excluded by applying t-SNE based on text-mining. Conclusion: Our proposed approach enables the recognition of simultaneous violation patterns during the on-site inspection. It is expected to decrease the detection time by increasing the likelihood of finding intentionally concealed violations.

Adaptive Web Search based on User Web Log (사용자 웹 로그를 이용한 적응형 웹 검색)

  • Yoon, Taebok;Lee, Jee-Hyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6856-6862
    • /
    • 2014
  • Web usage mining is a method to extract meaningful patterns based on the web users' log data. Most existing patterns of web usage mining, however, do not consider the users' diverse inclination but create general models. Web users' keywords can have a variety of meanings regarding their tendency and background knowledge. This study evaluated the extraction web-user's pattern after collecting and analyzing the web usage information on the users' keywords of interest. Web-user's pattern can supply a web page network with various inclination information based on the users' keywords of interest. In addition, the Web-user's pattern can be used to recommend the most appropriate web pages and the suggested method of this experiment was confirmed to be useful.

Unsupervised Motion Pattern Mining for Crowded Scenes Analysis

  • Wang, Chongjing;Zhao, Xu;Zou, Yi;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3315-3337
    • /
    • 2012
  • Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.

Precision Analysis of the STOMP(FW) Algorithm According to the Spatial Conceptual Hierarchy (공간 개념 계층에 따른 STOMP(FW) 알고리즘의 정확도 분석)

  • Lee, Yon-Sik;Kim, Young-Ja;Park, Sung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5015-5022
    • /
    • 2010
  • Most of the existing pattern mining techniques are capable of searching patterns according to the continuous change of the spatial information of an object but there is no constraint on the spatial information that must be included in the extracted pattern. Thus, the existing techniques are not applicable to the optimal path search between specific nodes or path prediction considering the nodes that a moving object is required to round during a unit time. In this paper, the precision of the path search according to the spatial hierarchy is analyzed using the Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) (STOPM(FW)) algorithm which searches for the optimal moving path by considering the most frequent pattern and other weighted factors such as time and cost. The result of analysis shows that the database retrieval time is minimized through the reduction of retrieval range applying with the spatial constraints. Also, the optimal moving pattern is efficiently obtained by considering whether the moving pattern is included in each hierarchical spatial scope of the spatial hierarchy or not.

Learning Multidimensional Sequential Patterns Using Hellinger Entropy Function (Hellinger 엔트로피를 이용한 다차원 연속패턴의 생성방법)

  • Lee, Chang-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.477-484
    • /
    • 2004
  • The technique of sequential pattern mining means generating a set of inter-transaction patterns residing in time-dependent data. This paper proposes a new method for generating sequential patterns with the use of Hellinger measure. While the current methods are generating single dimensional sequential patterns within a single attribute, the proposed method is able to detect multi-dimensional patterns among different attributes. A number of heuristics, based on the characteristics of Hellinger measure, are proposed to reduce the computational complexity of the sequential pattern systems. Some experimental results are presented.

Optimization-Based Pattern Generation for LAD (최적화에 기반을 둔 LAD의 패턴 생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.11-18
    • /
    • 2006
  • The logical analysis of data(LAD) is a Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a novel optimization-based pattern generation methodology and propose two mathematical programming models, a mixed 0-1 integer and linear programming (MILP) formulation and a well-studied set covering problem (SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

Privacy Preserving Sequential Patterns Mining for Network Traffic Data (사이트의 접속 정보 유출이 없는 네트워크 트래픽 데이타에 대한 순차 패턴 마이닝)

  • Kim, Seung-Woo;Park, Sang-Hyun;Won, Jung-Im
    • Journal of KIISE:Databases
    • /
    • v.33 no.7
    • /
    • pp.741-753
    • /
    • 2006
  • As the total amount of traffic data in network has been growing at an alarming rate, many researches to mine traffic data with the purpose of getting useful information are currently being performed. However, network users' privacy can be compromised during the mining process. In this paper, we propose an efficient and practical privacy preserving sequential pattern mining method on network traffic data. In order to discover frequent sequential patterns without violating privacy, our method uses the N-repository server model and the retention replacement technique. In addition, our method accelerates the overall mining process by maintaining the meta tables so as to quickly determine whether candidate patterns have ever occurred. The various experiments with real network traffic data revealed tile efficiency of the proposed method.