• Title/Summary/Keyword: Pattern classifier

Search Result 382, Processing Time 0.027 seconds

Fault Diagnosis Method for Automatic Machine Using Artificial Neutral Network Based on DWT Power Spectral Density (인공신경망을 이용한 DWT 전력스펙트럼 밀도 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically abnormal sound on machines using the acoustic emission by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose here an automatic fault diagnosis method of hand drills using discrete wavelet transform(DWT) and pattern recognition techniques such as artificial neural networks(ANN). We first conduct a filtering analysis based on DWT. The power spectral density(PSD) is performed on the wavelet subband except for the highest and lowest low frequency subband. The PSD of the wavelet coefficients are extracted as our features for classifier based on ANN the pattern recognition part. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.

Temporal Classification Method for Forecasting Power Load Patterns From AMR Data

  • Lee, Heon-Gyu;Shin, Jin-Ho;Park, Hong-Kyu;Kim, Young-Il;Lee, Bong-Jae;Ryu, Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2007
  • We present in this paper a novel power load prediction method using temporal pattern mining from AMR(Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.

Classification of Emotional States of Interest and Neutral Using Features from Pulse Wave Signal

  • Phongsuphap, Sukanya;Sopharak, Akara
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.682-685
    • /
    • 2004
  • This paper investigated a method for classifying emotional states by using pulse wave signal. It focused on finding effective features for emotional state classification. The emptional states considered here consisted of interest and neutral. Classification experiments utilized 65 and 60 samples of interest and neutral states respectively. We have investigated 19 features derived from pulse wave signals by using both time domain and frequency domain analysis methods with 2 classifiers of minimum distance (normalized Euclidean distanece) and ${\kappa}$-Nearest Neighbour. The Leave-one-out cross validation was used as an evaluation mehtod. Based on experimental results, the most efficient features were a combination of 4 features consisting of (i) the mean of the first differences of the smoothed pulse rate time series signal, (ii) the mean of absolute values of the second differences of thel normalized interbeat intervals, (iii) the root mean square successive difference, and (iv) the power in high frequency range in normalized unit, which provided 80.8% average accuracy with ${\kappa}$-Nearest Neighbour classifier.

  • PDF

Character Recognition of Vehicle Number Plate using Modular Neural Network (모듈라 신경망을 이용한 자동차 번호판 문자인식)

  • Park, Chang-Seok;Kim, Byeong-Man;Seo, Byung-Hoon;Lee, Kwang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.409-415
    • /
    • 2003
  • Recently, the modular learning are very popular and receive much attention for pattern classification. The modular learning method based on the "divide and conquer" strategy can not only solve the complex problems, but also reach a better result than a single classifier′s on the learning quality and speed. In the neural network area, some researches that take the modular learning approach also have been made to improve classification performance. In this paper, we propose a simple modular neural network for characters recognition of vehicle number plate and evaluate its performance on the clustering methods of feature vectors used in constructing subnetworks. We implement two clustering method, one is grouping similar feature vectors by K-means clustering algorithm, the other grouping unsimilar feature vectors by our proposed algorithm. The experiment result shows that our algorithm achieves much better performance.

Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization (자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬)

  • 양보석;서상윤;임동수;이수종
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

BAYESIAN CLASSIFICATION AND FREQUENT PATTERN MINING FOR APPLYING INTRUSION DETECTION

  • Lee, Heon-Gyu;Noh, Ki-Yong;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.713-716
    • /
    • 2005
  • In this paper, in order to identify and recognize attack patterns, we propose a Bayesian classification using frequent patterns. In theory, Bayesian classifiers guarantee the minimum error rate compared to all other classifiers. However, in practice this is not always the case owing to inaccuracies in the unrealistic assumption{ class conditional independence) made for its use. Our method addresses the problem of attribute dependence by discovering frequent patterns. It generates frequent patterns using an efficient FP-growth approach. Since the volume of patterns produced can be large, we propose a pruning technique for selection only interesting patterns. Also, this method estimates the probability of a new case using different product approximations, where each product approximation assumes different independence of the attributes. Our experiments show that the proposed classifier achieves higher accuracy and is more efficient than other classifiers.

  • PDF

Sparse Representation Learning of Kernel Space Using the Kernel Relaxation Procedure (커널 이완절차에 의한 커널 공간의 저밀도 표현 학습)

  • 류재홍;정종철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, a new learning methodology for Kernel Methods is suggested that results in a sparse representation of kernel space from the training patterns for classification problems. Among the traditional algorithms of linear discriminant function(perceptron, relaxation, LMS(least mean squared), pseudoinverse), this paper shows that the relaxation procedure can obtain the maximum margin separating hyperplane of linearly separable pattern classification problem as SVM(Support Vector Machine) classifier does. The original relaxation method gives only the necessary condition of SV patterns. We suggest the sufficient condition to identify the SV patterns in the learning epochs. Experiment results show the new methods have the higher or equivalent performance compared to the conventional approach.

  • PDF

A Novel Algorithm for Fault Type Fast Diagnosis in Overhead Transmission Lines Using Hidden Markov Models

  • Jannati, M.;Jazebi, S.;Vahidi, B.;Hosseinian, S.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.742-749
    • /
    • 2011
  • Power transmission lines are one of the most important components of electric power system. Failures in the operation of power transmission lines can result in serious power system problems. Hence, fault diagnosis (transient or permanent) in power transmission lines is very important to ensure the reliable operation of the power system. A hidden Markov model (HMM), a powerful pattern recognizer, classifies events in a probabilistic manner based on fault signal waveform and characteristics. This paper presents application of HMM to classify faults in overhead power transmission lines. The algorithm uses voltage samples of one-fourth cycle from the inception of the fault. The simulation performed in EMTPWorks and MATLAB environments validates the fast response of the classifier, which provides fast and accurate protection scheme for power transmission lines.