• Title/Summary/Keyword: Pattern classifier

Search Result 383, Processing Time 0.028 seconds

Structural Damage Assessment Using the Probability Distribution Model of Damage Patterns (손상패턴의 확률밀도함수에 따른 구조물 손상추정)

  • 조효남;이성칠;오달수;최윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.357-365
    • /
    • 2003
  • The major problems with the conventional neural network, especially Back Propagation Neural Network, arise from the necessity of many training data for neural network learning and ambiguity in the relation of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damage of structure to avoid those drawbacks of the conventional neural network. In the PNN-based pattern classification problems, the probability density function for patterns is usually assumed by Gaussian distribution. But, in this paper, several probability density functions are investigated in order to select the most approriate one for structural damage assessment.

  • PDF

The Development of Automatic Inspection System for Flaw Detection in Welding Pipe (배관용접부 결함검사 자동화 시스템 개발)

  • Yoon Sung-Un;Song Kyung-Seok;Cha Yong-Hun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • This paper supplements shortcoming of radioactivity check by detecting defect of SWP weld zone using ultrasonic wave. Manufacture 2 stage robot detection systems that can follow weld bead of SWP by method to detect weld defects of SWP that shape of weld bead is complex for this as quantitative. Also, through signal processing ultrasonic wave defect signal system of GUI environment that can grasp easily existence availability of defect because do videotex compose. Ultrasonic wave signal of weld defects develops artificial intelligence style sightseeing system to enhance pattern recognition of weld defects and the classification rate using neural net. Classification of weld defects that do fan Planar defect and that do volume defect of by classify.

Implementation of a Human Body Motion Pattern Classifier using Extensions of Primitive Pattern Sequences (프리미티브 패턴 나열의 확장에 의한 사람 몸 동작 패턴 분류기의 구현)

  • 조경은;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.475-478
    • /
    • 2000
  • 사람의 몸 동작을 인식해야하는 여러 응용분야에서의 필요성이 대두되면서 이 분야로의 연구가 활발해지고 있다. 이 논문은 사람의 비언어적 행동을 자동적으로 분석할 수 있는 인식기 개발에 관한 것으로 실세계 3 차원 좌표값을 입력으로 하는 사람 몸 동작 패턴 분류기의 구현방법을 소개한 것이다. 하나의 사람 몸 동작은 각 몸 구성 성분(손, 아래팔, 위팔, 어깨, 머리, 몸통 등)의 움직임을 조합해서 정의한 수가 있기 때문에 개별적인 각 몸 구성성분의 움직임을 인식하여 조합해서 임의의 동작을 판별하려는 방법을 적용한다. 사람 몸 동작 패턴 분류기는 측정된 실세계 3 차원 좌표 자료를 양자화한 후 xy, zy 평면에 투영한 값을 자자 구한다. 이 결과를 각각 8 방향 체인 코드로 바꾸고 2 단계 체인 코드 평활화 사업을 하여, 4 방향 코드 체적화 및 대표 코드로의 압축단계를 거친다. 이로서 생성된 프리미티브 패턴나열들을 동작 클래스별로 분류하여 프리미티브 패턴나열의 확장으로 각각의 식별기를 구축하여 각 몸 구성 성분별 동작들을 분류한다. 일련의 실험이 행해져 그 타당성을 확인하였으며, 차후에 이 분류기는 비언어적 행동 분석을 위한 사람 몸 동작 인식기의 전처리 단계로 사용되어진 것이다.

  • PDF

A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition (패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구)

  • 박영석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.111-118
    • /
    • 2001
  • In this paper, in order to implement the multi-layered perceptron neural network using pure digital logic circuit model, we propose the new logic neuron structure, the digital canonical multi-layered logic neural network structure, and the multi-stage multi-layered logic neural network structure for pattern recognition applications. And we show that the proposed approach provides an incremental additive learning algorithm, which is very simple and effective.

  • PDF

Sign Image Database Collected at Jeonju Hanok Village (전주 한옥마을에서 수집한 간판영상 데이터베이스)

  • Oh, Il-Seok;Heo, Gi-Su
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.243-248
    • /
    • 2006
  • Recognition of sign has been studied to provide convenience tour information for foreigners and strangers through automatic recognition of sign. The sign image database is essential to training the classifier and to intuitive measurement of performance. In this paper, we described the sign image database collected at Jeonju Hanok Village. As to 45 each other sign image, corresponding 50 images are collected under several condition. This database could be important content to study for the field of pattern recognition.

  • PDF

Strong Uncorrelated Transform Applied to Spatially Distant Channel EEG Data

  • Kim, Youngjoo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 2015
  • In this paper, an extension of the standard common spatial pattern (CSP) algorithm using the strong uncorrelated transform (SUT) is used in order to extract the features for an accurate classification of the left- and right-hand motor imagery tasks. The algorithm is designed to analyze the complex data, which can preserve the additional information of the relationship between the two electroencephalogram (EEG) data from distant channels. This is based on the fact that distant regions of the brain are spatially distributed spatially and related, as in a network. The real-world left- and right-hand motor imagery EEG data was acquired through the Physionet database and the support vector machine (SVM) was used as a classifier to test the proposed method. The results showed that extracting the features of the pair-wise channel data using the strong uncorrelated transform complex common spatial pattern (SUTCCSP) provides a higher classification rate compared to the standard CSP algorithm.

Systematic Approach for Detecting Text in Images Using Supervised Learning

  • Nguyen, Minh Hieu;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • Locating text data in images automatically has been a challenging task. In this approach, we build a three stage system for text detection purpose. This system utilizes tensor voting and Completed Local Binary Pattern (CLBP) to classify text and non-text regions. While tensor voting generates the text line information, which is very useful for localizing candidate text regions, the Nearest Neighbor classifier trained on discriminative features obtained by the CLBP-based operator is used to refine the results. The whole algorithm is implemented in MATLAB and applied to all images of ICDAR 2011 Robust Reading Competition data set. Experiments show the promising performance of this method.

Face recognition of Intra-red Images for Interactive TV Control System (인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상의 얼굴 인식)

  • Won, Chul-Ho;Lee, Sang-Heon;Lee, Tae-Gyoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.11-17
    • /
    • 2010
  • In this parer, face recognition method which can be applied to ITCS (interactive TV control system) is proposed. We extracted ULBP(uniform local binary pattern) histogram feature from infra-red images, and we detected left-right eyes and face region by using SVM classifier. Then, We implemented face recognition system which is using Gabor transform and ULBP histogram feature and applied to personal verification for ITCS.

Neural-network based Computerized Emotion Analysis using Multiple Biological Signals (다중 생체신호를 이용한 신경망 기반 전산화 감정해석)

  • Lee, Jee-Eun;Kim, Byeong-Nam;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Emotion affects many parts of human life such as learning ability, behavior and judgment. It is important to understand human nature. Emotion can only be inferred from facial expressions or gestures, what it actually is. In particular, emotion is difficult to classify not only because individuals feel differently about emotion but also because visually induced emotion does not sustain during whole testing period. To solve the problem, we acquired bio-signals and extracted features from those signals, which offer objective information about emotion stimulus. The emotion pattern classifier was composed of unsupervised learning algorithm with hidden nodes and feature vectors. Restricted Boltzmann machine (RBM) based on probability estimation was used in the unsupervised learning and maps emotion features to transformed dimensions. The emotion was characterized by non-linear classifiers with hidden nodes of a multi layer neural network, named deep belief network (DBN). The accuracy of DBN (about 94 %) was better than that of back-propagation neural network (about 40 %). The DBN showed good performance as the emotion pattern classifier.

Performance Evaluation of EEG-BCI Interface Algorithm in BCI(Brain Computer Interface)-Naive Subjects (뇌컴퓨터접속(BCI) 무경험자에 대한 EEG-BCI 알고리즘 성능평가)

  • Kim, Jin-Kwon;Kang, Dae-Hun;Lee, Young-Bum;Jung, Hee-Gyo;Lee, In-Su;Park, Hae-Dae;Kim, Eun-Ju;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.428-437
    • /
    • 2009
  • The Performance research about EEG-BCI algorithm in BCI-naive subjects is very important for evaluating the applicability to the public. We analyzed the result of the performance evaluation experiment about the EEG-BCI algorithm in BCI-naive subjects on three different aspects. The EEG-BCI algorithm used in this paper is composed of the common spatial pattern(CSP) and the least square linear classifier. CSP is used for obtaining the characteristic of event related desynchronization, and the least square linear classifier classifies the motor imagery EEG data of the left hand or right hand. The performance evaluation experiments about EEG-BCI algorithm is conducted for 40 men and women whose age are 23.87${\pm}$2.47. The performance evaluation about EEG-BCI algorithm in BCI-naive subjects is analyzed in terms of the accuracy, the relation between the information transfer rate and the accuracy, and the performance changes when the different types of cue were used in the training session and testing session. On the result of experiment, BCI-naive group has about 20% subjects whose accuracy exceed 0.7. And this results of the accuracy were not effected significantly by the types of cue. The Information transfer rate is in the inverse proportion to the accuracy. And the accuracy shows the severe deterioration when the motor imagery is less then 2 seconds.