• 제목/요약/키워드: Pattern classifier

검색결과 383건 처리시간 0.023초

패턴 인식을 위한 진화 셀룰라 분류기 (Evolvable Cellular Classifiers for pattern Recognition)

  • 주재호;신윤철;강훈
    • 한국지능시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.379-389
    • /
    • 2000
  • A cellular automaton is well-known for self-organizing and dynamic behavions in the filed of artifial life. This paper addresses a new neuronic architecture called an evolvable celluar classifier which evolves with the genetic rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on cellular programming, but its mechanism is simpler becaise it utilizes only mutations for the main genetic operators and resmbles the Hopfield network. Therefore, the desirable bit-patterns could be obtained through evolutionary processes for just one individual agent, As a rusult, an evolvable hardware is derived which is applicable to clessification of bit-string information.

  • PDF

난수발생기와 일반화된 회귀 신경망을 이용한 DNA 서열 분류 (DNA Sequence Classification Using a Generalized Regression Neural Network and Random Generator)

  • 김성모;김근호;김병환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.525-530
    • /
    • 2004
  • A classifier was constructed by using a generalized regression neural network (GRU) and random generator (RG), which was applied to classify DNA sequences. Three data sets evaluated are eukaryotic and prokaryotic sequences (Data-I), eukaryotic sequences (Data-II), and prokaryotic sequences (Data-III). For each data set, the classifier performance was examined in terms of the total classification sensitivity (TCS), individual classification sensitivity (ICS), total prediction accuracy (TPA), and individual prediction accuracy (IPA). For a given spread, the RG played a role of generating a number of sets of spreads for gaussian functions in the pattern layer Compared to the GRNN, the RG-GRNN significantly improved the TCS by more than 50%, 60%, and 40% for Data-I, Data-II, and Data-III, respectively. The RG-GRNN also demonstrated improved TPA for all data types. In conclusion, the proposed RG-GRNN can effectively be used to classify a large, multivariable promoter sequences.

패턴 인식을 위한 진화 셀룰라 분류기 (Evolvable Cellular Classifiers for Pattern Recognition)

  • Ju, Jae-ho;Shin, Yoon-cheol;Hoon Kang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.236-240
    • /
    • 2000
  • A cellular automaton is well-known for self-organizing and dynamic behaviors in the field of artificial life. This paper addresses a new neuronic architecture called an evolvable cellular classifier which evolves with the genetic rules (chromosomes) in the non-uniform cellular automata. An evolvable cellular classifier is primarily based on cellular programing, but its mechanism is simpler because it utilizes only mutations for the main genetic operators and resembles the Hopfield network. Therefore, the desirable hi t-patterns could be obtained through evolutionary processes for just one individual agent. As a result, an evolvable hardware is derived which is applicable to classification of bit-string information.

  • PDF

Fuzzy Classification Method for Processing Incomplete Dataset

  • Woo, Young-Woon;Lee, Kwang-Eui;Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제8권4호
    • /
    • pp.383-386
    • /
    • 2010
  • Pattern classification is one of the most important topics for machine learning research fields. However incomplete data appear frequently in real world problems and also show low learning rate in classification models. There have been many researches for handling such incomplete data, but most of the researches are focusing on training stages. In this paper, we proposed two classification methods for incomplete data using triangular shaped fuzzy membership functions. In the proposed methods, missing data in incomplete feature vectors are inferred, learned and applied to the proposed classifier using triangular shaped fuzzy membership functions. In the experiment, we verified that the proposed methods show higher classification rate than a conventional method.

언어의미(言語意味)와 통사지식(統辭知識)이 아동의 언어 발달에 미치는 역할 : 국어(國語) 분류사(分類詞) 습득(習得) 연구 (The Role of Semantic and Syntactic Knowledge in the First Language Acquisition of Korean Classifiers)

  • 이귀옥
    • 아동학회지
    • /
    • 제18권2호
    • /
    • pp.73-85
    • /
    • 1997
  • The purpose of the present study was to examine the role of semantic and syntactic knowledge in the first language acquisition of Korean classifiers. The elicited classifiers production test(EPT) was conducted to 105 children aged from 2 to 7. EPT consisted of 16 classifiers and two items for each classifier. 32 items were divided into 2 major semantic features: animacy and inanimacy. The semantic features of inanimacy were subcategorized into 3 features such as neutral, shape and function. The results revealed that; 1) children produced the correct structure of classification from the very early age with correct word order of the noun phrase showing early fundamental syntactic knowledge; 2) The earliest response pattern was to respond to all nouns in the same way using a neutral classifier showing no apparent semantic basis for their choice; 3) Children didn't show any preference for animate, shape, or function classifiers.

  • PDF

고성능 한자 인식 시스템 (High Performance Recognition System for Chinese Character)

  • 안성옥;주기호
    • 공학논문집
    • /
    • 제1권1호
    • /
    • pp.59-64
    • /
    • 1997
  • 2000개 이상의 많은 한자들이 신문이나 책들의 출판물에서 매일 사용되고 있다. 한자는 문자의 복잡성과 방대한 양으로 인하여 문자인식에 많은 어려움이 있다. 본 논문은 고성능 한자 인식 시스템을 제안하고 한자의 특성을 고려한 새로운 문자 분류기법을 개발하였다.

  • PDF

라만 스펙트럼에서 간 질병 분류를 위한 MAP과 MLP 적용 연구 (Application of MAP and MLP Classifier on Raman Spectral Data for Classification of Liver Disease)

  • 박아론;백성준;양병흠;나승유
    • 한국콘텐츠학회논문지
    • /
    • 제9권2호
    • /
    • pp.432-438
    • /
    • 2009
  • 본 연구에서는 마이크로 라만 스펙트럼을 이용한 급성 알코올성 간 손상과 만성 에탄올 간섬유증의 진단을 위해, 전처리 과정을 거친 스펙트럼으로부터 변별력 있는 피크를 추출하여 자동 분류기를 이용한 진단하는 방법을 살펴보았다. 전처리 단계에서는 기준선의 왜곡을 제거한 후 피크 보존에 유용한 Savitzky-Golay 필터를 이용하여 smoothing하였다. 전처리 후 급성 알코올성 간 손상과 만성 에탄올성 간섬유증을 구분할 수 있는 변별력 있는 스펙트럼 피크를 확인하고 이를 이용하여 MAP과 신경망으로 분류하였으며 실험 결과에 의하면 제안한 전처리 방법과 자동 분류기로 만성 에탄올성 간섬유증과 급성 알코올성 간 손상을 80% 이상 분류할 수 있었고, 이는 특징 벡터로 사용한 피크가 간 질병 진단에 사용될 수 있는 가능성을 보여준다고 할 수 있다.

복합 특징과 결합 인식기에 의한 필기체 숫자인식 (Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier)

  • 박중조;송영기;김경민
    • 한국정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.14-22
    • /
    • 2001
  • 필기체 숫자는 개인에 따라 필체가 매우 다양하므로 단일 특징과 단일 분류기를 사용하여 오프라인 필기체 숫자인식을 수행할 경우 높은 인식률을 얻기가 어렵다. 이에 본 논문에서는 복합 특징과 결합 인식기를 사용하여 필기체 숫자 인식의 인식률을 향상시키는 방안을 제시한다. 인식률의 향상을 위해, 먼저 상호 보완적인 특징들-방향특징, 교차점특징, 망특징-을 선정하고 이를 사용하여 숫자영상의 전역적 및 국부적 특징을 갖는 세 종류의 새로운 복합 특징을 구성한다. 그리고 패턴 인식기로는 세 개의 신경회로망 분류기를 퍼지 적분으로 결합한 결합 인식기를 사용한다. 본 인식기의 성능 평가를 위해 Concordia 대차의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 97.85%의 인식률을 달성하였다.

  • PDF

특징 추출 알고리즘과 Adaboost를 이용한 이진분류기 (Binary classification by the combination of Adaboost and feature extraction methods)

  • 함승록;곽노준
    • 전자공학회논문지CI
    • /
    • 제49권4호
    • /
    • pp.42-53
    • /
    • 2012
  • 패턴 인식과 기계 학습 분야에서 분류는 가장 기본적으로 해결해야 하는 문제의 유형이다. Adaboost 알고리즘은 Boosting 알고리즘의 아이디어를 실제 데이터분석에 이용할 수 있도록 개량한 방법으로써, 단계를 반복하여 나온 여러 개의 약한 분류기와 가중치 값들의 조합으로 강한 분류기를 생성하는 두 개의 클래스를 분류하는 분류기이다. 주성분 분석법과 선형 판별 분석법은 높은 차원의 특징 벡터를 낮은 차원의 특징 벡터로 축소하는 특징 벡터의 차원 감소와 데이터의 특징 추출에도 유용하게 사용되는 방법들이다. 본 논문에서는, 주성분 분석법과 선형 판별 분석법을 이용하여 추출한 특징을 Adaboost 알고리즘의 약 분류기로 사용함으로써, 특징 추출과 분류를 동시에 하고, 인식률을 높이는 효율적인 Boosted-PCA와 Boosted-LDA 알고리즘을 제안한다. 마지막 장에서는, 제안하는 알고리즘으로 UCI Data-Set 중 2 Class-Data와 FRGC Data의 남자와 여자 영상에 대해서 분류 실험을 진행하였다. 실험의 결과로 제안한 Boosted-PCA와 Boosted-LDA 알고리즘이 기존의 특징 추출 알고리즘과 최근접 이웃 분류기, SVM을 이용한 분류기 방법과 비교하여 인식률이 향상됨을 보인다.

Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템 (Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier)

  • 온승엽;지승도
    • 한국시뮬레이션학회논문지
    • /
    • 제20권2호
    • /
    • pp.77-85
    • /
    • 2011
  • 생물 및 의학계에서는 생물정보학(bioinformatics)의 데이터 중 혈청 단백질(proteome)에서 추출한 데이터가 질병의 진단에 관련된 정보를 가지고 있고, 이 데이터를 분류 분석함으로 질병을 조기에 진단 할 수 있다고 믿고 있다. 본 논문에서는 혈청 단백질(2-D PAGE: Two-dimensional polyacrylamide gel electrophoresis)로부터 암과 정상을 판별하는 새로운 복합분류기를 제안한다. 새로운 복합 분류기에서는 support vector machine(SVM)와 다층 퍼셉트론(multi-layer perceptron: MLP)와 k-최근 접 이웃(k-nearest neighbor: k-NN)분류기를 앙상블(ensemble) 방법으로 통합하는 동시에 다중 부스팅(boosting) 방법으로 각 분류기를 확장하여 부분류기(subclassifier)의 배열(array)으로서 복합분류기를 구성하였다. 각 부분류기에서는 최적 특성 집합 (feature set)을 탐색하기 위하여 유전 알고리즘(genetic algorithm: GA)를 적용하였다. 복합분류기의 성능을 측정하기 위하여 암연구에서 얻어진 임상 데이터를 복합분류기에 적용하였고 결과로서 단일 분류기 보다 높은 분류 정확도와 안정성을 보여 주었다.