• 제목/요약/키워드: Pattern Mining

검색결과 622건 처리시간 0.027초

데이터마이닝 기법을 이용한 주상변압기 고장유형 분석 및 복구 예측모델 구축에 관한 연구 (Fault Pattern Analysis and Restoration Prediction Model Construction of Pole Transformer Using Data Mining Technique)

  • 황우현;김자희;장완성;홍정식;한득수
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1507-1515
    • /
    • 2008
  • It is essential for electric power companies to have a quick restoration system of the faulted pole transformers which occupy most of transformers to supply stable electricity. However, it takes too much time to restore it when a transformer is out of order suddenly because we now count on operator in investigating causes of failure and making decision of recovery methods. This paper presents the concept of 'Fault pattern analysis and Restoration prediction model using Data mining techniques’, which is based on accumulated fault record of pole transformers in the past. For this, it also suggests external and internal causes of fault which influence the fault pattern of pole transformers. It is expected that we can reduce not only defects in manufacturing procedure by upgrading quality but also the time of predicting fault patterns and recovering when faults occur by using the result.

텍스트 마이닝을 이용한 소비자 소비패턴 분석 기법 설계 (An Analysis Scheme Design of Customer Spending Pattern using Text Mining)

  • 정은희;이병관
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.181-188
    • /
    • 2018
  • 본 논문에서는 텍스트 마이닝을 이용한 소비자의 소비패턴 분석 기법을 제안하였다. 제안하는 소비패턴 분석기법에서는 첫째, 피어슨의 상관계수를 이용하여 사용자의 평가점수에 대한 유사도를 분석하고, 둘째, 텍스트 마이닝 기법 중의 하나의 TD-IDF의 코사인 유사도를 이용하여 사용자의 리뷰들간의 유사도를 분석하고, 셋째, Sentiwordnet를 이용하여 평가점수와 리뷰의 일치성을 분석하였다. 그리고 제안하는 소비패턴 분석 기법은 평가점수의 유사도와 리뷰의 유사도를 이용하여 근접이웃들을 선정하고, 선정된 이웃에 소비패턴에 적합한 추천리스트를 제공하였다. 추천리스트의 정확도는 피어슨 상관계수가 0.79, TD-IDF가 0.73, 그리고 제안하는 소비패턴분석기법이 0.82로 나타났다. 즉, 제안하는 소비패턴분석기법은 소비자의 정량적인 평가점수와 정성적인 리뷰를 모두 이용하므로 소비 패턴을 좀 더 정확하게 분석할 수 있었다.

Routing Relevant Data to Group Mobile Users by Mining Social Trajectory Pattern

  • Cho, Hyunjeong;Park, Yourim;Lee, HyungJune
    • 한국통신학회논문지
    • /
    • 제38B권11호
    • /
    • pp.934-936
    • /
    • 2013
  • A routing scheme for a group of mobile users for wireless ad-hoc networks is presented. The proposed scheme mines social activity patterns from wireless traces, and exploits social user group for efficient data routing among users based on a data publish approach. Simulation results based on real-world wireless traces show that our routing scheme reduces routing cost for a large mobile user group with a factor of 1.8 compared to a baseline counterpart.

High Utility Itemset Mining by Using Binary PSO Algorithm with V-shaped Transfer Function and Nonlinear Acceleration Coefficient Strategy

  • Tao, Bodong;Shin, Ok Keun;Park, Hyu Chan
    • Journal of information and communication convergence engineering
    • /
    • 제20권2호
    • /
    • pp.103-112
    • /
    • 2022
  • The goal of pattern mining is to identify novel patterns in a database. High utility itemset mining (HUIM) is a research direction for pattern mining. This is different from frequent itemset mining (FIM), which additionally considers the quantity and profit of the commodity. Several algorithms have been used to mine high utility itemsets (HUIs). The original BPSO algorithm lacks local search capabilities in the subsequent stage, resulting in insufficient HUIs to be mined. Compared to the transfer function used in the original PSO algorithm, the V-shaped transfer function more sufficiently reflects the probability between the velocity and position change of the particles. Considering the influence of the acceleration factor on the particle motion mode and trajectory, a nonlinear acceleration strategy was used to enhance the search ability of the particles. Experiments show that the number of mined HUIs is 73% higher than that of the original BPSO algorithm, which indicates better performance of the proposed algorithm.

Mining Spatio-Temporal Patterns in Trajectory Data

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of Information Processing Systems
    • /
    • 제6권4호
    • /
    • pp.521-536
    • /
    • 2010
  • Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to the inappropriate approximations of spatial and temporal properties. In this paper, we address the problem of mining spatio-temporal patterns from trajectory data. The inefficient description of temporal information decreases the mining efficiency and the interpretability of the patterns. We provide a formal statement of efficient representation of spatio-temporal movements and propose a new approach to discover spatio-temporal patterns in trajectory data. The proposed method first finds meaningful spatio-temporal regions and extracts frequent spatio-temporal patterns based on a prefix-projection approach from the sequences of these regions. We experimentally analyze that the proposed method improves mining performance and derives more intuitive patterns.

맵리듀스 기반 DFP-Tree를 이용한 클러스터링 알고리즘 (Clustering Algorithm using the DFP-Tree based on the MapReduce)

  • 서영원;김창수
    • 인터넷정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.23-30
    • /
    • 2015
  • 빅 데이터가 이슈화됨에 따라 데이터 분석의 결과를 기반으로 동작하는 많은 응용들이연구되고 왔고, 대표적인 응용들은 전자상거래 시스템의 상품 추천 서비스, 검색 엔진에서의 검색 서비스, 소셜 네트워크 서비스에서의 친구 추천 서비스 등이 있다. 본 논문은 기존의 데이터 마이닝 기법 중 데이터 집합에서 나타나는 유사한 패턴들을 마이닝하는 빈발 패턴 트리와 컴퓨터 과학의 이론에 기초한 결정트리를 결합하여 결정 빈발 트리 알고리즘을 제안한다. 이는 기존의 빈발 패턴 트리 알고리즘은 패튼 트리에서 패턴 생성에 대한 정확성은 보장되나 소셜 데이터처럼 다양한 패턴이 나타는 데이터에 대해서는 많은 수의 패턴들을 생성시켜 분석에 대한 어려움이 있어, 서브트리들과의 수렴 여부를 판단하는 모델로 변형시켜 문제를 개선한다. 또한 맵리듀스로 모델링하여 분산처리를 통한 고속 처리 알고리즘을 제시한다.

시계열 데이터로부터의 경향성 기반 순차패턴 탐색 (Trend-based Sequential Pattern Discovery from Time-Series Data)

  • 오용생;이동하;남도원;이전영
    • 지능정보연구
    • /
    • 제7권1호
    • /
    • pp.27-45
    • /
    • 2001
  • 데이터마이닝에서 시계열 데이터로부터 순차패턴을 발견하는 연구는 사건이나 아이템이 주로 연구되어왔지만, 최근에는 설비의 상태를 알 수 있는 센서와 같은 수치 값의 형태를 가지는 분야에 관심을 가지게 되었다. 그러나 수치 형태의 데이터는 패턴을 만드는 동안 동일한 값을 가지는 경우가 거의 없기 때문에 기존의 사건이나 아이템 등으로 변환될 수 있는 패턴요소의 특징을 만드는 것이 가장 중요하다. 이러한 패턴요소를 발견하는 지금가지 방법은 이동 윈도우와 클러스터링을 사용하는 방법을 적용하였는데, 이러한 방법은 다양한 윈도우의 크기와 클러스터 값을 적용하여 반복적으로 작업을 하며, 찾아진 결과를 해석하는데도 많은 문제가 있다. 본 연구는 수치 값을 가진 데이터를 벡터의 형태로 만들어 패턴요소를 만드는 방법을 제시한다. 이렇게 만들어진 패턴요소는 전체 데이터를 사용하는 것 보다 이해되기 쉽고 보다 빠르게 순차패턴을 찾을 수 있다. 벡터로 변환된 패턴요소는 각도와 크기를 가지는데 우리는 이들 벡터들의 상호 연관성을 정의하고, 이들 연관성을 이용하여 순차패턴을 찾는 방법을 제시한다.

  • PDF

근사 알고리즘을 이용한 순차패턴 탐색 (Searching Sequential Patterns by Approximation Algorithm)

  • 산사볼트가람라흐차;황영섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.29-36
    • /
    • 2009
  • 서열데이터베이스에 있는 자주 발현하는 부분 서열을 패턴으로 찾아내는 순차패턴 탐색은 넓은 응용 분야를 가지는 중요한 데이터 마이닝 문제이다. DNA 서열에서 순차패턴이 모티프가 될 수 있으므로 DNA 서열에서 순차패턴을 찾는 것을 연구하였다. 대부분의 기존 마이닝 방법은 순차패턴의 정의에 따라 정확한 정합에 주력하여 노이즈가 있는 환경이나 실제 문제에서 발생하는 부정확한 데이터에 대하여 제대로 작동하지 않을 수 있다. 이러한 문제가 생물 데이터인 DNA 서열에서 자주 나타난다. 이러한 문제를 다루기 위한 근사 정합 방법을 연구하였다. 본 연구의 아이디어는 자주 발생하는 패턴을 근사 패턴이라 부르는 그룹으로 분류할 수 있다는 관찰에서 기반을 둔다. 기존의 Prefixspan 알고리즘은 주어진 긴 서열에서 순차패턴을 잘 찾을 수 있다. 본 연구는 Prefixspan 알고리즘을 개선하여 유사한 순차패턴을 찾을 수 있게 하였다. 실험 결과는 PreFixSpan보다 제안한 방법이 패턴 길이가 4일 때, 근사 순차패턴의 빈도가 5배 높아짐을 보였다.

오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법 (A Hybrid Data Mining Technique Using Error Pattern Modeling)

  • 허준;김종우
    • 한국경영과학회지
    • /
    • 제30권4호
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

보험 고객의 유지를 위한 순차 패턴 마이닝 (Sequential Pattern Mining for Customer Retention in Insurance Industry)

  • 이재식;조유정
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.274-282
    • /
    • 2005
  • Customer retention is one of the major issued in life insurance industry, in which competition is increasingly fierce. There are many things to do to retain customers. One of those things is to be continuously in touch with all customers. The objective of this study is to design the contact scheduling system(CSS) to support the planers who must touch the customers without having subjective information. Support-planers suffer from lack of information which can be used to intimately touch. CSS that is developed in this study generates contact schedule to touch customers by taking into account existing contact history. CSS has a two stage process. In the first stage, it segments customers according to his or her demographics and contract status data. Then it finds typical pattern and pattern is combined to business rules for each segment. We expert that CSS would support support-planers to make uncontacted customers' experience positive.

  • PDF