• Title/Summary/Keyword: Patient-specific model

Search Result 118, Processing Time 0.025 seconds

Classification of Genes Based on Age-Related Differential Expression in Breast Cancer

  • Lee, Gunhee;Lee, Minho
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.156-161
    • /
    • 2017
  • Transcriptome analysis has been widely used to make biomarker panels to diagnose cancers. In breast cancer, the age of the patient has been known to be associated with clinical features. As clinical transcriptome data have accumulated significantly, we classified all human genes based on age-specific differential expression between normal and breast cancer cells using public data. We retrieved the values for gene expression levels in breast cancer and matched normal cells from The Cancer Genome Atlas. We divided genes into two classes by paired t test without considering age in the first classification. We carried out a secondary classification of genes for each class into eight groups, based on the patterns of the p-values, which were calculated for each of the three age groups we defined. Through this two-step classification, gene expression was eventually grouped into 16 classes. We showed that this classification method could be applied to establish a more accurate prediction model to diagnose breast cancer by comparing the performance of prediction models with different combinations of genes. We expect that our scheme of classification could be used for other types of cancer data.

Design of Integrated Medical Information System based on XML (XML 기반 통합의료정보 시스템의 설계)

  • Lim, Chae-Gyun;Rho, Kyung-Taeg
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.167-172
    • /
    • 2010
  • Recently most of hospitals progress toward setting up computer based medical information system, and there exists medical standard such as HL7 and DICOM to exchange efficiently between systems each other. However, Heterogeneous system built in each hospital gets a different data structure of medical information for patient and also makes it difficult to share information among hospitals. This paper proposes an integrated medical information system which changes existing diverse types of medical information to a unified structure and combines into one management model using XML from hospital specific medical information system. Thus, our proposed system makes it possible to get an effectively information share across hospitals without considering the internal system structure of other hospital. As a result, Hospitals provide a efficient and correct diagnosis, saving time and cost to patients.

Prognostic Role of PTEN Gene Expression and Length of Survival of Breast Cancer Patients in the North East of Iran

  • Golmohammadi, Rahim;Rakhshani, Mohammad Hassan;Moslem, Ali Reza;Pejhan, Akbar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.305-309
    • /
    • 2016
  • PTEN protein is an important tumour suppressor factor detectable by immunohistochemistry. The goal of the present study was to investigate the prognostic role of PTEN gene expression focusing on length of survival in breast cancer patients. This descriptive-analytical study was conducted on 100 breast cancer cases referred to Sabzevar hospitals in the north east of Iran between 2010 and 2011, followed up to 2015. The PTEN gene expression of tumour tissue samples was determined using specific monoclonal antibodies. The data were analyzed using Chi-square test and Fisher's exact test. Patient length of survival was analyzed after 4 years of follow-up using the Cox regression model. The PTEN gene was expressed in 70 of 100 samples, while being found at a high level in all noncancerous samples. There was an inverse significant relationship between expression of PTEN and tumour stage and grade (p<0.001). In addition, expression of PTEN in invasive ductal tumours was less than in non-invasive tumours. There was also an inverse significant relationship between the likelihood of death and PTEN gene expression (p<0.01). These findings indicate that lack of PTEN gene expression can be sign for a worse prognosis and poor survival in breast cancer.

Development of Nursing Intervention List - Caregiver Support : Soobal - (돌봄제공자 지원 : 수발발간호중재 목록 개발 - 뇌졸중을 중심으로 -)

  • 안수연;염영희
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.3
    • /
    • pp.518-529
    • /
    • 1999
  • The purpose of this research was to develop a nursing intervention list for family caregivers. The specific steps were as follows : 1. Analyze the concept, Soobal, based on literature review and case observation. 2. Generate an initial list of defining activities for ‘Caregiver Support : Soobal’. 3. Validate the defining activities. 4. Complete the final list of defining activities. A two-round Delphi questionnaire with an adaptation of Fehring's methodology was used to establish the content validity of intervention, Caregiver Support : Soobal. The definition of ‘Caregiver Support : Soobal’ was provision of the necessary information, advocacy, and support to facilitate primary patient care by someone other than a health care professional in Korean traditional manners. Ten nurse experts participated in Round I and II of this study. They were asked to rate activities that examplified the interventions on a scale of 1 (activity is not at all characteristic) to 5 (activity is very characteristic). Round I contained 15 ‘critical’ activities and 10 ‘supporting’ activities, while round II contained 16 ‘critical’ activities and 6 ‘supporting’ activities. No activities were considered to be ‘nonsupporting’ in both round I and II. Finally, the definition and 25 defining activities were developed. Intervention, Caregiver Support : Soobal, attained an ICV score of .82. This study provides a protocol model to develop Korean nursing interventions.

  • PDF

A Comparative Study of Oswestry Back Pain Disability Questionnaire Versus Computer Adaptive Testing for Measuring Back Pain

  • Choi, Bong-Sam
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.22-31
    • /
    • 2013
  • The aim of the present study was to compare measurement precisions of the Oswestry Back Pain Disability Questionnaire (ODQ) and a computer adaptive testing (CAT) method. The ODQ has been regarded as one of the most reliable condition-specific measure for back pain for decades. Cross-sectional study was carried out with two independent convenient samples from two out-patient rehabilitation clinics for back pain ($n_1=42$) and non-back pain group ($n_2=42$). Participants were asked to fill out the ODQ and CAT of International Classification of Functioning, Disability and Health-Activity Measure (ICF-AM). A series of Rasch analyses were performed to calculate person ability measures. The CAT measures had greater relative precision in discriminating the groups than did the ODQ measure in comparisons of the relative precision. The CAT measure appears to be more effective than did the ODQ measure in terms of measurement precision. By administering test items calibrated in a way, CAT measures using item response theory may promise a means with measurement precision as well as efficiency.

Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart

  • Okada, Jun-ichi;Washio, Takumi;Sugiura, Seiryo;Hisada, Toshiaki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.295-303
    • /
    • 2019
  • A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted drug-induced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.

Reliability Management of Mechanical Ventilator in Intensive Care Unit Using FMEA Based on ISO14971 (ISO14971 기반 FMEA를 이용한 중환자실내 인공호흡기 신뢰성 관리)

  • Hyun Joon, Kim;Won Kyu, Kim;Tae Jong, Kim;Gee Young, Suh
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • Due to the spread of COVID-19, many patients with severe respiratory diseases have occurred worldwide, and accordingly, the use of mechanical ventilators has exploded. However, hospitals do not have systematic risk management, and the Medical Device Regulation also provides medical device risk management standards for manufacturers, but does not apply to devices in use. In this paper, we applied the Failure Mode Effects Analysis (FMEA) risk analysis technique based on the International Standard ISO 14971 (Medical Devices-Application of risk management to medical devices) for 85 mechanical ventilators of a specific model in use in hospitals. Failure modes and effects of each parts were investigated, and risk priority was derived through multiplication of each score by preparing criteria for severity, occurrence, and detection for each failure mode. As a result, it was confirmed that the microprocessor-based Patient Unit/Monitoring board in charge of monitoring scored the highest score with 36 points, and that reliability management is possible through systematic risk management according to priority.

Location Studies of Prostate Volume Measurement by using Transrectal Ultrasonography: Experimental Study by Self-Produced Prostate Phantom (경직장초음파를 이용한 전립선 볼륨측정 시의 위치 연구: 전립선모형 제작과 실험)

  • Kim, Yun-Min;Yoon, Joon;Byeon, II-kyun;Lee, Hoo-Min;Kim, Hyeong- Gyun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2015
  • Accurate volume measurement of the prostate is a significant role in determining the result of diagnosis and treatment of benign prostate hyperplasia. The purpose of this study was to determine, when measuring prostate volume by TRUS, whether location is more accurately determined by transaxial or longitudinal scanning. With reference to the patient's image, it was produced six prostate model. It compares the actual volume and the measurement volume, and find the optimal measurement position of each specific model. Prostate volume measured by TRUS closely correlates with prostate phantom volume. There was no significant difference(p = .156). To measure the accurate volume of prostate with focal protrusion, its length should be measured exclude the protrusions.

Severity Measurement Methods and Comparing Hospital Death Rates for Coronary Artery Bypass Graft Surgery (관상동맥우회술의 중증도 측정과 병원 사망률 비교에 관한 연구)

  • Ahn, Hyung-Sik;Shin, Young-Soo;Kwon, Young-Dae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.3
    • /
    • pp.244-252
    • /
    • 2001
  • Objective : Health insurers and policy makers are increasingly examining the hospital mortality rate as an indicator of hospital quality and performance. To be meaningful, a risk-adjustment of the death rates must be implemented. This study reviewed 5 severity measurement methods and applied them to the same data set to determine whether judgments regarding the severity-adjusted hospital mortality rates were sensitive to the specific severity measure. Methods : The medical records of 584 patients who underwent coronary artery bypass graft surgery in 6 general hospitals during 1996 and 1997 were reviewed by trained nurses. The MedisGroups, Disease Staging, Computerized Severity Index, APACHE III and KDRG were used to quantify severity of the patients. The predictive probability of death was calculated for each patient in the sample from a multivariate logistic regression model including the severity score, age and sex to evaluate the hospitals' performance, the ratio of the observed number of deaths to the expected number for each hospital was calculated. Results : The overall in-hospital mortality rate was 7.0%, ranging from 2.7% to 15.7% depending on the particular hospital. After the severity adjustment, the mortality rates for each hospital showed little difference according to the severity measure. The 5 severity measurement methods varied in their statistical performance. All had a higher c statistic and $R^2$ than the model containing only age and sex. There was a little difference in the relative hospital performance evaluation by the severity measure. Conclusion : These results suggest that judgments regarding a hospital's performance based on severity adjusted mortality can be sensitive to the severity measurement method. Although the 5 severity measures regarding hospital performance concurred, more often than would be expected by chance, the assessment of an individual hospital mortality rates varied by the different severity measurement method used.

  • PDF

Trends in the development of human stem cell-based non-animal drug testing models

  • Lee, Su-Jin;Lee, Hyang-Ae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.441-452
    • /
    • 2020
  • In vivo animal models are limited in their ability to mimic the extremely complex systems of the human body, and there is increasing disquiet about the ethics of animal research. Many authorities in different geographical areas are considering implementing a ban on animal testing, including testing for cosmetics and pharmaceuticals. Therefore, there is a need for research into systems that can replicate the responses of laboratory animals and simulate environments similar to the human body in a laboratory. An in vitro two-dimensional cell culture model is widely used, because such a system is relatively inexpensive, easy to implement, and can gather considerable amounts of reference data. However, these models lack a real physiological extracellular environment. Recent advances in stem cell biology, tissue engineering, and microfabrication techniques have facilitated the development of various 3D cell culture models. These include multicellular spheroids, organoids, and organs-on-chips, each of which has its own advantages and limitations. Organoids are organ-specific cell clusters created by aggregating cells derived from pluripotent, adult, and cancer stem cells. Patient-derived organoids can be used as models of human disease in a culture dish. Biomimetic organ chips are models that replicate the physiological and mechanical functions of human organs. Many organoids and organ-on-a-chips have been developed for drug screening and testing, so competition for patents between countries is also intensifying. We analyzed the scientific and technological trends underlying these cutting-edge models, which are developed for use as non-animal models for testing safety and efficacy at the nonclinical stages of drug development.