• Title/Summary/Keyword: Patient exposure dose

Search Result 378, Processing Time 0.037 seconds

A Study on the Exposure and Free Space Scattered Dose in Radiography (X선 촬영시 피폭선량 및 실내공간선량에 관한 연구)

  • Ahn, Bong-Seon;Lee, Kyu-Eun;Seon, Jong-Ryul
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.26-30
    • /
    • 1998
  • We tried to study in order to furnish the data for medical exposure dose and scattered ray in radiography. As the tables(from 1 to 3) show, we can presume, by means of a concrete numerical value, the amount of results affected by patient radiation exposure dose and somatic effect in radiography. However, there are many difficulties in the difference of exposure factor in each hospital, the accuracy of measuring by tracebility, shortage of exposure dose data especially in the area of children, and portable radiography, etc. In the radiation examination, it is considered if the gained benefit to the patient due to radiation is more than the risk of radiation, then the medical exposure is thought to be justified. Therefore, the radiotechnologists should continually make an effort to develop and study new techniques so as to reduce patient exposure dose.

  • PDF

Evaluation of Patient Exposure Dose during Cardiac Electrophysiology Study under Various Conditions (심장 전기생리학 검사 시 조건 변화에 따른 환자 피폭 선량 평가)

  • Seong-Bhin Koh;Sung-Min Ahn
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2023
  • This study used a adult absorption dose phantom (CIRS model 701-G, USA) made of human equivalent material and the vascular imaging equipment Allura Xper FD 20 (Philips, Netherlands). Optically stimulated luminescent dosimeters (OSLD) were inserted into the anatomical positions corresponding to each organ, and the exposure dose was measured. Dose area product (DAP) and air kerma (AK) measured by the dose meter in the equipment were compared. Continuous imaging was performed at two angles for a total of 20 minutes, with a frame per seconds of 3.75 and 7.5 fps and an FOV of 42 cm, 37 cm, and 31 cm, respectively, under the conditions of fluoflavor I, II, and III, each selected for 5 repetitions. This study was found that selecting a lower fps was the most effective way to reduce patient exposure dose, and adjusting the fluoflavor was a good alternative method for reducing patient exposure dose at high fps. Therefore the method of condition change with the greatest dose reduction effect is to set the minimum FPS and can reduce patient exposure dose according to geometric conditions and fluoflavor characteristics.

Are Medical Personnel Safe from Radiation Exposure from Patient Receiving Radioiodine Ablation Therapy? (갑상선 암의 방사성요오드 치료 시 의료진은 방사선 피폭으로부터 안전한가?)

  • Kim, Chang-Guhn;Kim, Dae-Weung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.259-279
    • /
    • 2009
  • Radioiodine ablation therapy has been considered to be a standard treatment for patient with differentiated thyroid cancer after total thyroidectomy. Patients may need to be hospitalized to reduce radiation exposure of other people and relatives from radioactive patients receiving radioiodine therapy. Medical staffs, nursing staffs and technologists sometimes hesitate to contact patients in radioiodine therapy ward. The purpose of this paper is to introduce radiation dosimetry, estimate radiation dose from patients and emphasize the safety of radiation exposure from patients treated with high dose radioiodine in therapy ward. The major component of radiation dose from patient is external exposure. However external radiation dose from these patients treated with typical therapeutic dose of 4 to 8 GBq have a very low risk of cancer induction compared with other various risks occurring in daily life. The typical annual radiation dose without shielding received by patient is estimated to be 5 to 10 mSv, which is comparable with 100 to 200 times effective dose received by chest PA examination. Therefore, when we should keep in mind the general principle of radiation protection, the risks of radiation exposure from patients are low and the medical personnel are considered to be safe from radiation exposure.

System Software Design of Computerized Tomography Radiation Dose Management (컴퓨터 단층촬영 방사선 노출 관리 시스템 소프트웨어 설계)

  • Yang, Yu Mi;Cho, Sang Wook;Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • This paper provides the design of system software for the management of radiation dose that is generated by using computerized tomography(CT). Recently, the radiation leakage incident of Japanese nuclear power plant was in the news internationally and there is a growing interest not only in nuclear power plant but in medical radiation exposure. In spite of the fact that currently safety management of radiation is under control only the workers of the radiation involved, now the exposure management of patients have been required. As surgery and inspections using the radiation have increased, this medical radiation exposure is increasing too. But it is a real situation that medical institutions don't know the level of radiation exposure applied to the patient. Therefore, a system for managing the radiation exposure of a patient from the medical institution is required. This paper proposes a design of a software program that manages the radiation exposure of CT which is a typical imaging tool to use the radiation in the medical institution. By check the amount of radiation dose and set the limit of dose, we would be of help to optimize the medical exposure of the patient.

Patient Radiation Exposure Dose Evaluation of Whole Spine Scanography Due to Exposure Direction (Whole Spine Scanography의 검사방향에 따른 환자 선량 평가)

  • Kim, Jung-Su;Seo, Deok-Nam;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Whole spine scanography (WSS) is a radiological examination that exposes the whole body of the individual being examined to x-ray radiation. WSS is often repeated during the treatment period, which results in a much greater radiation exposure than that in routine x-ray examinations. The aims of the current study were to evaluate the patient dose of WSS using computer simulation, image magnification and angulation of phantom image using different patient position. We evaluated the effective dose(ED) of 23 consecutive patients (M : F = 13:10) who underwent WSS, based on the automatic image pasting method for multiple exposure digital radiography. The Anterior-Posterior position(AP) and Posterior-Anterior position( PA) projection EDs were evaluated based on the PC based Monte Carlo simulation. We measured spine transverse process distance and angulation using DICOM measurement. For all patient, the average ED was 0.069 mSv for AP position and 0.0361 mSv for PA position. AP position calculated double exposure then PA position. For male patient, the average ED was 0.089 mSv(AP) and 0.050 mSv(PA). For female patient, the average ED was 0.0431 mSv(AP) and 0.026 mSv(PA). The transverse process of PA spine image measured 5% higher than AP but angulation of transverse process was no significant differences. In clinical practice, just by change the patient position was conformed to reduce the ED of patient. Therefor we need to redefine of protocol for digital radiography such as WSS. whole spine scanography, effective dose, patient exposure dose, exposure direction. protocol optimization.

Patient Exposure Dose Reduction in Coronary Angiography & Intervention (심혈관조영술 및 중재술 시 환자 선량 감소방안)

  • Lim, Do-Hyung;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.69-76
    • /
    • 2022
  • This study, the method of reducing the exposure dose by changing the geometrical requirements among the preceding studies and the method of directly wearing a protector on the patient were used to expose the patient. A comparative experiment was conducted on the method of reducing the dose and the most effective method for reducing the exposure dose was investigated. Using the phantom, the dose of the lens, thyroid gland, and gonad gland in the 5 views most used in coronary angiography and intervention accumulated 5 times for 10 seconds at 60~70 kV, 200~250 mA as an automatic controller of the angiography system, and measured by Optically Stimulated Luminescent Dosimeter(OSLD). SID 100 cm and Cine 15 f/s as a control group the experiment was conducted by dividing the experimental group into 3 groups: a group lowered to Cine 7.5 f/s, a phantom protector, and a group lowered to 95 cm SID. As a result of the experiment, showing decrease in exposure dose compared to the control group. Lowering the cine frame may be the simplest and most effective method to reduce the exposure dose, but there is a limit that it cannot be applied if the operator judges that the diagnostic value is small or feels uncomfortable with the procedure. Conclusion as fallow reducing the exposure dose by directly wearing protector is the next best solution, and it is hoped that the conclusions obtained through this study will help reduce the exposure dose to unnecessary organ.

A Study on Establishment of the Optimal Target Exposure Index for Skull Radiography Based on Diagnostic Reference Level (진단참고수준 기반 두부 방사선검사의 최적 목표노출지수 설정에 관한 연구)

  • Park, Hye-Min;Yoon, Yong-Su;Kim, Eun-Hye;Jeong, Hoi-Woun;Kim, Jung-Su
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.599-605
    • /
    • 2021
  • The International Electrotechnical Commission (IEC) 62494-1 has defined the exposure index (EI) that have a proportional relationship with the dose incident on the image receptor, and target exposure index (EIT), deviation index (DI). In this study, an appropriate EIT for skull radiography was established through the diagnostic reference level (DRL) and changes in DI were confirmed. Entrance surface dose (ESD) and EI were obtained using the computed radiography system displayed the EI as per IEC on console and skull phantom by experiment based on the national average exposure conditions announced in 2012 and 2019. And appropriate EIT was established by applying the DRL in 2012 and 2019. As a results, the EIT is changed according to the change in the DRL, and the exposure condition that becomes the ideal DI according to the change in the EIT also has a difference of about 1.41 times. DRL is recommended to optimize the patient dose, however it is difficult to measure in real time at medical institutions whereas EI and DI are displayed on the console at the same time as exposure. When the EIT is set based on the DRL and the DI is closed to an ideal value, it is useful as a patient dose management tool. Therefore, when the EIT is periodically managed along with the revision of the DRLs, the patient dose can be optimized through the EI, EIT and DI.

Patient Radiation Exposure Dose in Computed Tomography (전산화단층촬영장치에서 환자피폭선량)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • In case of a CT examinations, there is a difference in the distribution of radiation dose from that of general X-ray equipments, and it has been known to cause a great radiation exposure during the examinations. However, owing to its high reliability on the accuracy of a examinations result, its use has increased continuously. In consideration of such a circumstance, the CT equipment, radiation dose during CT examinations, diagnostic reference level, and solutions to reduce radiation dose were mentioned on the basis of previously reported data.

A Study on Radiation Dose and Image Quality according to CT Table Height in Brain CT (두부 CT 검사 시 테이블 높이에 따른 선량과 화질에 관한 연구)

  • Ki-Won Kim;Joo-Young Oh;Jung-Whan Min;Sang-Sun Lee;Young-Bong Lee;Kyung-Hwan Lim;Yun Yi
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.99-106
    • /
    • 2023
  • The height of the table should be considered important during computed tomography (CT) examination, but according to previous studies, not all radiology technologists set the table at the patient's center at the examination, which affects the exposure dose and image quality received by the patient. Therefore, this study intends to study the image quality exposure dose according to the height of the table to realize the optimal image quality and dose during the brain CT scan. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. For the exposure dose measurement, optically stimulated luminescence dosimeter (OSLD) was attached to the front, side, eye, and thyroid gland of the head phantom. In the signal to noise ratio (SNR) measurement result, The SNR values for each table height were all lower than 915 mm. As a result of exposure dose, the exposure dose on each area increased as the table height decreased. The height of the table has a close relationship with the patient's radiation exposure dose in the CT scan.

The Influence of the Change of Patient Radiation Exposure Dose Distribution on the Grid Condition and Detector Acquisition Dose on the Exposure Distance in the Use of Amorphous Silicon Thin Film Transistor Detector with AEC (자동노출제어장치를 이용한 비정질 실리콘 평판형 검출기에서 격자의 조건에 따른 환자선량 변화와 촬영 거리의 변화가 검출기 획득선량에 미치는 영향)

  • Yoon, Seok-Hwan;Choi, Jun-Gu;Han, Dong-Kyoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2007
  • This study attempts to propose an appropriate method of using digital medical imaging equipments, by studying the effects of automatic exposure control(AEC), grid ratio and the change of radiography distance on the patient dose and detertor acquisition dose during the procedure of acquiring image through a digital medical imaging detector. The change of dose following the change of grid ratio's exposure and radiography distance was measured, by using an abdominal phantom organized with tissue equivalent materials in an amorphous silicon thin film transistor detecter installed with AWC. The case to use grid ratio 12 : 1, focal distance 180cm to radiography distance 110cm in AEC, the patient dose increased rather when we used grid ration 10 : 1, focal distance 110cm. When AEC was not used,the dose necessary for image acquisition decreased as the grid ratio became higher and the distance became further. but detector acquisition dose was not reduced when in applied AEC. When purchasing digiral medical imaging equipments, optional items such as AEC and grid shall be accurately selected to satisfy the use of the equipments. Radiography error made by radiation technologist and unnenessary patient dose can be reduced by selecting equipments with a radiography distance marker equipment when it did not apply AEC. These equipments can also be helpful in maintaining high imaging quality, one of the merits of digital detectors.

  • PDF