The purpose of this study was to verify the validity of the Patient Severity Classification Tool by examining the correlations between the APACHE Ⅲ and the Patient Severity Classification Tool and to propose admission criteria to the ICU. The instruments used for this study were the APACHE Ⅲ developed by Knaus and the Patient Severity Classification Tool developed by Korean Clinical Nurses Association. Data was collected from the 156 Medical ICU patients during their first 24 hours of admission at the Seoul National University Hospital by three trained Medical ICU nurses from April 20 to August 31 1999. Data were analyzed using the frequency, $x^2$, Wilcoxon rank sum test, and Spearman rho. There was statistically significant correlations between the scores of the APACHE III and the Patient Severity Classification Tool. Mortality rate was increased as patients classification of severity in both the APACHE III and the Patient Severity Classification Tool scored higher. The Patient Severity Classification Tool was proved to be a valid and reliable tool, and a useful tool as one of the severity predicting factors, ICU admission criteria, information sharing between ICUs, quality evaluations of ICUs, and ICU nurse staffing.
Objective : The sub-axial injury classification (SLIC) and severity scale was developed to decide whether to operate the cervical injured patient or not, but the reliability of SLIC and severity scale among the different physicians was not well known. Therefore, we evaluated the reliability of SLIC among a spine surgeon, a resident of neurosurgery and a neuro-radiologist. Methods : In retrograde review in single hospital from 2002 to 2009 years, 75 cases of sub-axial spine injured patients underwent operation. Each case was blindly reviewed for the SLIC and severity scale by 3 different observers by two times with 4 weeks interval with randomly allocated. The compared axis was the injury morphology score, the disco-ligamentous complex score, the neurological status score and total SLIC score; the neurological status score was derived from the review of medical record. The kappa value was used for the statistical analysis. Results : Interobserver agreement of SLIC and severity scale was substantial agreement in the score of injury morphology [intraclass correlation (ICC)=0.603] and total SLIC and severity sacle (ICC value=0.775), but was fair agreement in the disco-ligamentous complex score (ICC value= 0.304). Intraobserver agreements were almost perfect agreement in whole scales with ICC of 0.974 in a spine surgeon, 0.948 in a resident of neurosurgery, and 0.963 in a neuro-radiologist. Conclusion : The SLIC and severity scale is comprehensive and easily applicable tool in spine injured patient. Moreover, it is very useful tool to communicate among spine surgeons, residents of neurosurgery and neuro-radiologists with sufficient reproducibility.
The tools that classify the severity of patients based on the prediction of mortality include APACHE, SAPS, and MPM. Theses tools rely crucially on the evaluation of patients' general clinical status on the first date of their admission to ICU. Nursing activities are one of the most crucial factors influencing on the quality of treatment that patients receive and one of the contributing factors for their prognosis and safety. The purpose of this study was to identify the goodness-of-fit of CPSCS of critical patient severity classification system(CPSCS) and Glasgow coma scale(GCS) and the clinical usefulness of its death rate prediction. Data were collected from the medical records of 187 neurological patients who were admitted to the ICU of C University Hospital. The data were analyzed through $x^2$ test, t-test, Mann-Whitney, Kruskal-Wallis, goodness-of-fit test, and ROC curve. In accordance with patients' general and clinical characteristics, patient mortality turned out to be statistically different depending on ICU stay, endotracheal intubation, central venous catheter, and severity by CPSCS. Homer-Lemeshow goodness-of-fit tests were CPSCS and GCS and the results of the discrimination test using the ROC curve were $CPSCS_0$, .734, $GCS_0$,.583, $CPSCS_{24}$,.734, $GCS_{24}$, .612, $CPSCS_{48}$,.591, $GCS_{48}$,.646, $CPSCS_{72}$,.622, and $GCS_{72}$,.623. Logistic regression analysis showed that each point on the CPSCS score signifies1.034 higher likelihood of dying. Applied to neurologically ill patients, early CPSCS scores can be regarded as a useful tool.
Proceedings of the Korea Institute of Fire Science and Engineering Conference
/
2012.04a
/
pp.190-193
/
2012
The tools that classify the severity of patients based on the prediction of mortality include APACHE, SAPS, and MPM. Theses tools rely crucially on the evaluation of patients' general clinical status on the first date of their admission to ICU. Nursing activities are one of the most crucial factors influencing on the quality of treatment that patients receive and one of the contributing factors for their prognosis and safety. The purpose of this study was to identify the goodness-of-fit of CPSCS of critical patient severity classification system(CPSCS) and Glasgow coma scale(GCS) and the clinical usefulness of its death rate prediction. Data were collected from the medical records of 187 neurological patients who were admitted to the ICU of C University Hospital. The data were analyzed through $x^2$ test, t-test, Mann-Whitney, Kruskal-Wallis, goodness-of-fit test, and ROC curve. In accordance with patients' general and clinical characteristics, patient mortality turned out to be statistically different depending on ICU stay, endotracheal intubation, central venous catheter, and severity by CPSCS. Homer-Lemeshow goodness-of-fit tests were CPSCS and GCS and the results of the discrimination test using the ROC curve were $CPSCS_0$,.734, $GCS_0$,.583, $CPSCS_{24}$,.734, $GCS_{24}$,.612, $CPSCS_{48}$,.591, $GCS_{48}$,.646, $CPSCS_{72}$,.622, and $GCS_{72}$,.623. Logistic regression analysis showed that each point on the CPSCS score signifies1.034 higher likelihood of dying. Applied to neurologically ill patients, early CPSCS scores can be regarded as a useful tool.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.11
/
pp.126-136
/
2018
The purpose of this study was to develop a severity-adjustment model for predicting mortality in acute stroke patients using machine learning. Using the Korean National Hospital Discharge In-depth Injury Survey from 2006 to 2015, the study population with disease code I60-I63 (KCD 7) were extracted for further analysis. Three tools were used for the severity-adjustment of comorbidity: the Charlson Comorbidity Index (CCI), the Elixhauser comorbidity index (ECI), and the Clinical Classification Software (CCS). The severity-adjustment models for mortality prediction in patients with acute stroke were developed using logistic regression, decision tree, neural network, and support vector machine methods. The most common comorbid disease in stroke patients were hypertension, uncomplicated (43.8%) in the ECI, and essential hypertension (43.9%) in the CCS. Among the CCI, ECI, and CCS, CCS had the highest AUC value. CCS was confirmed as the best severity correction tool. In addition, the AUC values for variables of CCS including main diagnosis, gender, age, hospitalization route, and existence of surgery were 0.808 for the logistic regression analysis, 0.785 for the decision tree, 0.809 for the neural network and 0.830 for the support vector machine. Therefore, the best predictive power was achieved by the support vector machine technique. The results of this study can be used in the establishment of health policy in the future.
Trauma remains a significant healthcare burden, causing over five million yearly fatalities. Notably, the liver is a frequently injured solid organ in abdominal trauma, especially in patients under 40 years. It becomes even more critical given that uncontrolled hemorrhage linked to liver trauma can have mortality rates ranging from 10% to 50%. Liver injuries, mainly resulting from blunt trauma such as motor vehicle accidents, are traditionally classified using the American Association for the Surgery of Trauma grading scale. However, recent developments have introduced the World Society of Emergency Surgery classification, which considers the patient's physiological status. The diagnostic approach often involves multiphase computed tomography (CT). Still, newer methods like split-bolus single-pass CT and contrast-enhanced ultrasound (CEUS) aim to reduce radiation exposure. Concerning management, nonoperative strategies have emerged as the gold standard, especially for hemodynamically stable patients. Incorporating angiography with embolization has also been beneficial, with success rates reported between 80% and 97%. However, it is essential to identify the specific source of bleeding for effective embolization. Given the severity of liver trauma and its potential complications, innovations in diagnostic and therapeutic approaches have been pivotal. While CT remains a primary diagnostic tool, methods like CEUS offer safer alternatives. Moreover, nonoperative management, especially when combined with angiography and embolization, has demonstrated notable success. Still, the healthcare community must remain vigilant to complications and continuously seek improvements in trauma care.
Moon, Gi Ho;Cho, Jae-Woo;Kim, Beom Soo;Yeo, Do Hyun;Oh, Jong-Keon
Journal of Trauma and Injury
/
v.32
no.1
/
pp.40-46
/
2019
Purpose: We perform an analysis of infection risk factors for fracture patients and confirm that the risk factors reported in previous studies increase the risk of actual infection among fractured patients. In addition, injury severity score (ISS) which is used as an evaluation tool for morbidity of trauma patients, confirms whether there is a relationship with infection after orthopedic fracture surgery. Methods: We retrospectively reviewed 1,818 patients who underwent fixation surgery at orthopedic trauma team, focused trauma center from January 1, 2015 to December 31, 2017. Thirty-five patients were infected after fracture surgery. We analyzed age, sex, open fracture criteria based on Gustilo-Aderson classification 3b, anatomical location (upper extremity or lower extremity) of fracture, diabetes, smoking, ISS. Results: Of 1,818 patients, 35 (1.9%) were diagnosed with postoperative infection. Of the 35 infected patients, nine (25.7%) were female and five (14.0%) were upper extremity fractures. Three (8.6%) were diagnosed with diabetes and eight (22.8%) were smokers. Thirteen (37.1%) had ISS less than nine points and six (17.1%) had ISS 15 points or more. Of 1,818 patients, 80 had open fractures. Surgical site infection were diagnosed in 12 (15.0%) of 80. And nine of 12 were checked with Gustilo-Aderson classification 3b or more. Linear logistic regression analysis was performed using statistical analysis program Stata 15 (Stata Corporation, College Station, TX, USA). In addition, independent variables were logistic regression analyzed individually after Propensity scores matching. In all statistical analyzes, only open fracture was identified as a risk factor. Conclusions: The risk factors for infection in fracture patients were found to be significantly influenced by open fracture rather than the underlying disease or anatomical feature of the patient. In the case of ISS, it is considered that there is a limitation. It is necessary to develop a new scoring system that can appropriately approach the morbidity of fracture trauma patients.
The major objective of this research is to identify those hospital characteristics that best explain cost variation among hospitals and to formulate linear models that can predict hospital costs. Specific emphasis is placed on hospital output, that is, the identification of diagnosis related patient groups (DRGs) which are medically meaningful and demonstrate similar patterns of hospital resource consumption. A casemix index is developed based on the DRGs identified. Considering the common problems encountered in previous hospital cost research, the following study requirements are estab-lished for fulfilling the objectives of this research: 1. Selection of hospitals that exercise similar medical and fiscal practices. 2. Identification of an appropriate data collection mechanism in which demographic and medical characteristics of individual patients as well as accurate and comparable cost information can be derived. 3. Development of a patient classification system in which all the patients treated in hospitals are able to be split into mutually exclusive categories with consistent and stable patterns of resource consumption. 4. Development of a cost finding mechanism through which patient groups' costs can be made comparable across hospitals. A data set of Medicare patients prepared by the Social Security Administration was selected for the study analysis. The data set contained 27,229 record abstracts of Medicare patients discharged from all but one short-term general hospital in Connecticut during the period from January 1, 1971, to December 31, 1972. Each record abstract contained demographic and diagnostic information, as well as charges for specific medical services received. The 'AUT-OGRP System' was used to generate 198 DRGs in which the entire range of Medicare patients were split into mutually exclusive categories, each of which shows a consistent and stable pattern of resource consumption. The 'Departmental Method' was used to generate cost information for the groups of Medicare patients that would be comparable across hospitals. To fulfill the study objectives, an extensive analysis was conducted in the following areas: 1. Analysis of DRGs: in which the level of resource use of each DRG was determined, the length of stay or death rate of each DRG in relation to resource use was characterized, and underlying patterns of the relationships among DRG costs were explained. 2. Exploration of resource use profiles of hospitals; in which the magnitude of differences in the resource uses or death rates incurred in the treatment of Medicare patients among the study hospitals was explored. 3. Casemix analysis; in which four types of casemix-related indices were generated, and the significance of these indices in the explanation of hospital costs was examined. 4. Formulation of linear models to predict hospital costs of Medicare patients; in which nine independent variables (i. e., casemix index, hospital size, complexity of service, teaching activity, location, casemix-adjusted death. rate index, occupancy rate, and casemix-adjusted length of stay index) were used for determining factors in hospital costs. Results from the study analysis indicated that: 1. The system of 198 DRGs for Medicare patient classification was demonstrated not only as a strong tool for determining the pattern of hospital resource utilization of Medicare patients, but also for categorizing patients by their severity of illness. 2. The wei틴fed mean total case cost (TOTC) of the study hospitals for Medicare patients during the study years was $11,27.02 with a standard deviation of $117.20. The hospital with the highest average TOTC ($1538.15) was 2.08 times more expensive than the hospital with the lowest average TOTC ($743.45). The weighted mean per diem total cost (DTOC) of the study hospitals for Medicare patients during the sutdy years was $107.98 with a standard deviation of $15.18. The hospital with the highest average DTOC ($147.23) was 1.87 times more expensive than the hospital with the lowest average DTOC ($78.49). 3. The linear models for each of the six types of hospital costs were formulated using the casemix index and the eight other hospital variables as the determinants. These models explained variance to the extent of 68.7 percent of total case cost (TOTC), 63.5 percent of room and board cost (RMC), 66.2 percent of total ancillary service cost (TANC), 66.3 percent of per diem total cost (DTOC), 56.9 percent of per diem room and board cost (DRMC), and 65.5 percent of per diem ancillary service cost (DTANC). The casemix index alone explained approximately one half of interhospital cost variation: 59.1 percent for TOTC and 44.3 percent for DTOC. Thsee results demonstrate that the casemix index is the most importand determinant of interhospital cost variation Future research and policy implications in regard to the results of this study is envisioned in the following three areas: 1. Utilization of casemix related indices in the Medicare data systems. 2. Refinement of data for hospital cost evaluation. 3. Development of a system for reimbursement and cost control in hospitals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.