• Title/Summary/Keyword: Pathological results

Search Result 1,644, Processing Time 0.033 seconds

Gene Expression of Early Growth Response Protein 1 in INS-1 Pancreatic β-cells Treated with Allomyrina dichotoma Hemolymph (췌장 β-세포에서 Allomyrina dichotoma 혈림프 처리에 의한 EGR1유전자 발현)

  • Kwon, Kisang;Lee, Eun-Ryeong;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.425-429
    • /
    • 2021
  • We have investigated the expression of early growth response protein 1 (EGR1) in INS-1 pancreatic β-cells treated with Allomyrina dichotoma hemolymph. The Korean rhinoceros beetle, A. dichotoma (Coleoptera: Scarabaeidae), is important in the insect industry for medical applications. We have already established a method for purification of A. dichotoma hemolymph that can be used in many experiments. EGR1 is reported as a multifunctional transcription factor that is implicated in virus infections. EGR1 has therefore been revealed as a major mediator and regulator in the physiological and pathological conditions of several cell and tissue types. New findings in this study are that A. dichotoma hemolymph, which promotes a dose- and time-dependent upregulation of EGR1 gene expression, shows an enhancement of this gene expression when combined with hypothermia or endoplasmic reticulum (ER) stress. These results suggest that A. dichotoma hemolymph may provide clues to EGR1-associated disease therapies involving gene regulation of EGR1.

Hepcidin Levels and Pathological Characteristics in Children with Fatty Liver Disease

  • Tsutsumi, Norito;Nishimata, Shigeo;Shimura, Masaru;Kashiwagi, Yasuyo;Kawashima, Hisashi
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • Purpose: Hepcidin levels have previously been reported to be correlated with liver damage. However, the association between hepcidin levels and liver fibrosis in children with fatty liver disease remains unclear. This study therefore aimed to investigate the pathophysiology of fibrosis in children with fatty liver disease and its association with hepcidin levels. Methods: This retrospective case series included 12 boys aged 6-17 years who were diagnosed with nonalcoholic fatty liver disease (NAFLD) or nonalcoholic steatohepatitis (NASH) at the Tokyo Medical University Hospital. Sixteen liver biopsy samples from 12 subjects were analyzed. Serum hepcidin levels were assayed using enzyme-linked immunosorbent assay. Immunostaining for hepcidin was performed, and the samples were stratified by staining intensity. Results: Serum hepcidin levels were higher in pediatric NAFLD/NASH patients than in controls. Conversely, a significant inverse correlation was observed between hepcidin immunostaining and Brunt grade scores and between hepcidin scores and gamma-glutamyltranspeptidase, hyaluronic acid, and leukocyte levels. We observed inverse correlations with a high correlation coefficient of >0.4 between hepcidin immunostaining and aspartate aminotransferase, alanine aminotransferase, total bile acid, and platelet count. Conclusion: There was a significant inverse correlation between hepcidin immunoreactivity and fibrosis in pediatric NAFLD patients; however, serum hepcidin levels were significantly higher, suggesting that these patients experienced a reduction in the hepcidin-producing ability of the liver in response to iron levels, leading to subsequent fibrosis. Therefore, hepcidin levels can be used as markers to identify the progression of fibrosis in patients with NAFLD.

Diagnostic Value of Immunoglobulin G Anti-Deamidated Gliadin Peptide Antibody for Diagnosis of Pediatric Celiac Disease: A Study from Shiraz, Iran

  • Anbardar, Mohammad Hossein;Haghighi, Fatemeh Golbon;Honar, Naser;Zahmatkeshan, Mozhgan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.4
    • /
    • pp.312-320
    • /
    • 2022
  • Purpose: Screening serologic tests are important tools for the diagnosis of celiac disease (CD). Immunoglobulin (Ig)G anti-deamidated gliadin peptide (anti-DGP) is a relatively new autoantibody thought to have good diagnostic accuracy, comparable to that of anti-tissue transglutaminase (anti-tTG) antibody. Methods: Pediatric patients (n=86) with a clinical suspicion of CD were included. Duodenal biopsy, anti-tTG, and IgG anti-DGP antibody tests were performed. The patients were divided into CD and control groups based on the pathological evaluation of duodenal biopsies. The diagnostic accuracy of serological tests was determined. Results: IgA anti-tTG and IgG anti-DGP antibodies were positive in 86.3% and 95.4% of patients, respectively. The sensitivity, specificity, and diagnostic accuracy of the IgA anti-tTG test were 86.3%, 50.0%, and 68.6%, respectively, and those of the IgG anti-DGP test were 95.4%, 85.7%, and 90.7%, respectively. The area under the receiver operating characteristic (ROC) curve was 0.84 (95% confidence interval [CI], 0.74-0.91) for IgA anti-tTG test and 0.93 (95% CI, 0.86-0.97) for IgG anti-DGP test. The comparison of IgA anti-tTG and IgG anti-DGP ROC curves showed a higher sensitivity and specificity of the IgG anti-DGP test. Conclusion: IgG anti-DGP is a reliable serological test for CD diagnosis in children. High tTG and DGP titers in the serum are suggestive of severe duodenal atrophy. The combined use of IgA anti-tTG and IgG anti-DGP tests for the initial screening of CD can improve diagnostic sensitivity.

Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice

  • Huang, Wen-Chung;Huang, Tse-Hung;Yeh, Kuo-Wei;Chen, Ya-Ling;Shen, Szu-Chuan;Liou, Chian-Jiun
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.654-664
    • /
    • 2021
  • Background: Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. Methods: Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. Results: Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells. Conclusion: Ginsenoside Rg3 is a potential immunomodulator that can ameliorate pathological features of asthma by decreasing oxidative stress and inflammation

Protective effects of endurance exercise on skeletal muscle remodeling against doxorubicin-induced myotoxicity in mice

  • Kwon, Insu
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.11-21
    • /
    • 2020
  • [Purpose] Doxorubicin (DOX) is a potent anti-cancer drug that appears to have severe myotoxicity due to accumulation. The skeletal muscle has a regeneration capacity through satellite cell activation when exposed to extracellular stimulus or damage. Endurance exercise (EXE) is a therapeutic strategy that improves pathological features and contributes to muscle homeostasis. Thus, this study investigated the effect of EXE training in mitigating chronic DOX-induced myotoxicity. [Methods] Male C57BL/6J mice were housed and allowed to acclimatize with free access to food and water. All the mice were randomly divided into four groups: sedentary control (CON, n=9), exercise training (EXE, n=9), doxorubicin treatment (DOX, n=9), doxorubicin treatment and exercise training (DOX+EXE, n=9) groups. The animals were intraperitoneally injected with 5 mg/kg/week of DOX treatment for 4 weeks, and EXE training was initiated for treadmill adaptation for 1 week and then performed for 4 weeks. Both sides of the soleus (SOL) muscle tissues were dissected and weighed after 24 hours of the last training sessions. [Results] DOX chemotherapy induced an abnormal myofiber's phenotype and transition of myosin heavy chain (MHC) isoforms. The paired box 7 (PAX7) and myoblast determination protein 1 (MYOD) protein levels were triggered by DOX, while no alterations were shown for the myogenin (MYOG). DOX remarkably impaired the a-actinin (ACTN) protein, but the EXE training seems to repair it. DOX-induced myotoxicity stimulated the expression of the forkhead box O3 (FOXO3a) protein, which was accurately controlled and adjusted by the EXE training. However, the FOXO3a-mediated downstream markers were not associated with DOX and EXE. [Conclusion] EXE postconditioning provides protective effects against chronic DOX-induced myotoxicity, and should be recommended to alleviate cancer chemotherapy-induced late-onset myotoxicity.

Olfactory Dysfunction in COVID-19 from a Korean Medical Perspective (COVID-19 후각 이상에 대한 한의학적 고찰)

  • Kim, Sanghyun;Kim, Jong-hyun
    • Journal of Korean Medical classics
    • /
    • v.35 no.2
    • /
    • pp.99-120
    • /
    • 2022
  • Objectives : To analyze symptoms of olfactory dysfunction caused by COVID-19 from a Korean Medical Perspective. Methods : Previous studies dealing with olfactory dysfunction accompanying COVID-19 were studied and analyzed for general characterization. Physiology and pathology of olfactory functions within the classical texts of Korean Medicine were collected and analyzed, through which symptoms of olfactory dysfunction in COVID-19 were examined. Results : Olfactory dysfunction manifested in high ratios in the early stages of confirmed COVID-19 cases, at times independent of other nasal symptoms such as blockage or discharge. There was a high chance of loss of taste being accompanied, while mental problems such as a tendency to have difficulty concentrating were present as well. In most cases, recovery took one to two weeks. From a Korean Medical perspective, physiology of olfactory function is closely linked to the Lungs, Ancetral Qi[宗氣], and the Heart, while its dysfunction could be explained by pathological factors such as Wind-Cold, Fire stagnation, Qi deficiency, Wind stroke, etc. Conclusions : In the context of external contraction disease[外感病], olfactory dysfunction could be caused by problems in the Lungs and Stomach that are responsible for breathing, or the Heart which is involved in recognizing and differentiating scent. General characteristics of COVID-19 imply it to be closely related to the Heart. In clinical application, overall symptoms need to be considered in diagnosis and treatment planning, after which further approaches could made to determine the problem to be of the Lung and Stomach, or of the Heart.

Evaluation of schistosomula lung antigen preparation and soluble egg antigen vaccines on experimental schistosomiasis mansoni

  • Nagwa S. M. Aly;Hye-Sook Kim;Maysa A. Eraky;Asmaa A. El Kholy;Basma T. Ali;Shin-ichi Miyoshi;Rabab E. Omar
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.3
    • /
    • pp.251-262
    • /
    • 2023
  • Schistosomiasis causes significant morbidity and mortality worldwide. This study aimed to assess the effect of schistosomula lung antigen preparation (SLAP) and soluble egg antigen (SEA) on a murine schistosomiasis mansoni model. Ninety laboratory-bred male Swiss albino mice were divided into 6 groups. Two doses of the vaccine were given at 2-week intervals. All mice were subcutaneously infected with 80±10 Schistosoma mansoni cercariae 2 weeks after the last vaccination dose. They were sacrificed 7 weeks post-infection. Parasitological and histopathological studies were conducted to assess the effect of inoculated antigens (single or combined). The results showed that the combination of SLAP and SEA (combination group) led to a significant reduction in worm burden (65.56%), and liver and intestine egg count (59% and 60.59%, respectively). The oogram pattern revealed a reduction in immature and mature eggs (15±0.4 and 10±0.8, respectively) and an increased number of dead eggs in the combination group (P<0.001). In terms of histopathological changes, the combination group showed notably small compact fibrocellular egg granuloma and moderate fibrosis in the liver. A high percentage of destroyed ova was observed in the intestine of the combination group. This study demonstrates for the first time the prophylactic effect of combined SLAP and SEA vaccine. The vaccine induced a significant reduction in the parasitological and pathological impacts of schistosomiasis mansoni in hepatic and intestinal tissues, making it a promising vaccine candidate for controlling schistosomiasis.

Therapeutic effects of selective p300 histone acetyl-transferase inhibitor on liver fibrosis

  • Hyunsik Kim;Soo-Yeon Park;Soo Yeon Lee;Jae-Hwan Kwon;Seunghee Byun;Mi Jeong Kim;Sungryul Yu;Jung-Yoon Yoo;Ho-Geun Yoon
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.114-119
    • /
    • 2023
  • Liver fibrosis is caused by chronic liver damage and results in the aberrant accumulation of extracellular matrix during disease progression. Despite the identification of the HAT enzyme p300 as a major factor for liver fibrosis, the development of therapeutic agents targeting the regulation of p300 has not been reported. We validated a novel p300 inhibitor (A6) on the improvement of liver fibrosis using two mouse models, mice on a choline-deficient high-fat diet and thioacetamide-treated mice. We demonstrated that pathological hall-marks of liver fibrosis were significantly diminished by A6 treatment through Masson's trichrome and Sirius red staining on liver tissue and found that A6 treatment reduced the expression of matricellular protein genes. We further showed that A6 treatment improved liver fibrosis by reducing the stability of p300 protein via disruption of p300 binding to AKT. Our findings suggest that targeting p300 through the specific inhibitor A6 has potential as a major therapeutic avenue for treating liver fibrosis.

Neoadjuvant PD-1 Inhibitor Plus Apatinib and Chemotherapy Versus Apatinib Plus Chemotherapy in Treating Patients With Locally Advanced Gastric Cancer: A Prospective, Cohort Study

  • Chunjing Wang;Zhen Wang;Yue Zhao;Fujing Wang
    • Journal of Gastric Cancer
    • /
    • v.23 no.2
    • /
    • pp.328-339
    • /
    • 2023
  • Purpose: This study aimed to evaluate the efficacy and safety of neoadjuvant programmed cell death-1 (PD-1) inhibitors plus apatinib and chemotherapy (PAC) in patients with locally advanced gastric cancer (LAGC). Materials and Methods: Seventy-three patients with resectable LAGC were enrolled and named the PAC group (n=39) or apatinib plus chemotherapy (AC) group (n=34) based on the treatment they chose. Neoadjuvant therapy was administered in a 21-day cycle for 3 consecutive cycles, after which surgery was performed. Results: The PAC group exhibited a higher objective response rate than the AC group (74.4% vs. 58.8%, P=0.159). Moreover, the PAC group showed a numerically better response profile than the AC group (P=0.081). Strikingly, progression-free survival (PFS) (P=0.019) and overall survival (OS) (P=0.049) were prolonged, whereas disease-free survival (DFS) tended to be longer in the PAC group than in the AC group (P=0.056). Briefly, the 3-year PFS, DFS, and OS rates were 76.1%, 76.1%, and 86.7% in the PAC group and 46.9%, 49.9%, and 70.3% in the AC group, respectively. Furthermore, PAC (vs. AC) treatment (hazard ratio=0.286, P=0.034) was independently associated with prolonged PFS in multivariate Cox regression analyses. The incidence of adverse events did not differ between the two groups (all P>0.05), where leukopenia, anemia, hypertension, and other adverse events were commonly observed in the PAC group. Conclusions: Neoadjuvant PAC therapy may achieve a preferable pathological response, delayed progression, and prolonged survival compared to AC therapy with a similar safety profile in patients with LAGC; however, further validation is warranted.

6-Shogaol, an Active Ingredient of Ginger, Improves Intestinal and Brain Abnormalities in Proteus Mirabilis-Induced Parkinson's Disease Mouse Model

  • Eugene Huh;Jin Gyu Choi;Yujin Choi;In Gyoung Ju;Dongjin Noh;Dong-yun Shin;Dong Hyun Kim;Hi-Joon Park;Myung Sook Oh
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2023
  • Parkinson's disease (PD) which has various pathological mechanisms, recently, it is attracting attention to the mechanism via microbiome-gut-brain axis. 6-Shogaol, a representative compound of ginger, have been known for improving PD phenotypes by reducing neuroinflammatory responses. In the present study, we investigated whether 6-shogaol and ginger attenuate degeneration induced by Proteus mirabilis (P. mirabilis) on the intestine and brain, simultaneously. C57BL/6J mice received P. mirabilis for 5 days. Ginger (300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 22 days including the period of P. mirabilis treatment. Results showed that 6-shogaol and ginger improved motor dysfunction and dopaminergic neuronal death induced by P. mirabilis treatment. In addition, they suppressed P. mirabilis-induced intestinal barrier disruption, pro-inflammatory signals such as toll-like receptor and TNF-α, and intestinal α-synuclein aggregation. Moreover, ginger and 6-shogaol significantly inhibited neuroinflammation and α-synuclein in the brain. Taken together, 6-shogaol and ginger have the potential to ameliorate PD-like motor behavior and degeneration of dopaminergic neurons induced by P. mirabilis in mice. Here, these findings are meaningful in that they provide the first experimental evidence that 6-shogaol might attenuate PD via regulating gut-brain axis.