• Title/Summary/Keyword: Pathogenic E. coli O-157

Search Result 130, Processing Time 0.022 seconds

Combined Treatment of Fumaric Acid with Mild Heat to Inactivate Microorganisms on Fresh Spinach during Storage (Fumaric acid와 mild heat의 병합 처리에 따른 시금치의 저장 중 미생물 제어 효과)

  • Son, Hyeon-Jeong;Kang, Ji-Hoon;Oh, Deog-Hwan;Min, Sea Cheol;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • The objective of this study was to examine the combined effect of fumaric acid with mild heat on the inactivation of microorganisms on spinach. Spinach leaves were inoculated with Escherichia coli O157:H7 and Listeria monocytogenes. Based on the results of single treatment of fumaric acid (0.1, 0.3, and 0.5%) or mild heat (40, 50, and $60^{\circ}C$) regarding the inactivation of the inoculated bacteria, the optimal condition for the combined treatment was suggested to be 0.5% fumaric acid and mild heat treatment at $50^{\circ}C$ for 5 min. The combined treatment of fumaric acid with mild heat caused 2.53 and 2.62 log reductions of the populations of L. monocytogenes and E. coli O157:H7, respectively. In addition, during storage of fresh spinach at $4^{\circ}C$ for 12 d, the combined treatment reduced initially the populations of total aerobic bacteria by 2.77 log CFU/g compared with the control. In particular, after 12 d of storage, the population of total aerobic bacteria for the combined treatment sample was 4.84 log CFU/g, whereas the control sample had 6.66 log CFU/g. Color and vitamin C content of spinach samples were not altered significantly by the combined treatment during storage. These results indicate that the combined treatment of fumaric acid with mild heat is an effective method to control microorganisms on spinach during storage.

Feed Hygiene and Meat Safety of Cattle Fed Processed Rice Hulls-bedded Broiler Litter

  • Kwak, W.S.;Huh, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1509-1517
    • /
    • 2004
  • A study was conducted to determine the safety of feeding processed broiler litter (BL) to beef cattle. The litter was processed by deepstacking, ensiling and composting. The health issues addressed relevant to the safety of feeding litter included pathogenic bacteria, mycotoxins, heavy metals, medicinal drugs and pesticide residues. Exp. 1 evaluated the feed hygiene of processed rice hulls-bedded BL. The presence of pathogenic bacteria in BL was determined before and after deepstacking. A total of 21 BL samples were collected over a 3-year period of commercial and experimental production of BL for beef cattle. Exp. 2 evaluated the safety of meat of cattle fed deepstacked BL. In Exp. 1, there were no pathogenic bacteria, such as coliform, E. coli, E. coli O157:H7, Salmonella, Listeria and Proteus, in deepstacked BL. Levels of heavy metals (Cu, Fe, Mn and Zn) and toxic heavy metals (As, Pb, Cd and Hg) were lower than the commercial feed tolerances. Aflatoxin, medicinal drug and pesticide residues were detected at extremely low levels. In Exp. 2, the meat of the BL-fed animals exhibited few differences in all analyzed items from that of the control group, showing safety from pathogenic microorganisms and heavy metals. When BL was withdrawn for 14 days prior to slaughtering the BLfed cattle, no medicinal drug residues were detected in the meat. Pesticides in the tissues of either group of animals were much lower than the tolerances. In conclusion, processed rice hulls-bedded BL and the meat of cattle fed BL were safe from the potential hazards of pathogenic bacteria, heavy metals, aflatoxin, medicinal drugs and pesticide residues.

Microbiological Quality and Antibiotic Susceptibility of E. coli Isolated from Agricultural Water in Gyeonggi and Gangwon Provinces (경기, 강원 지역 농업용수의 미생물학적 특성 및 농업용수 분리 대장균의 항생제 내성)

  • Hwang, Injun;Park, Daesoo;Chae, Hyobeen;Kim, Eunsun;Yoon, Jae-Hyun;Rajalingam, Nagendran;Choi, Songyi;Kim, Se-Ri
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.343-351
    • /
    • 2020
  • BACKGROUND: Irrigation water is known to be one of the major sources of bacterial contamination in agricultural products. In addition, anti-microbial resistance (AMR) bacteria in food products possess serious threat to humans. This study was aimed at investigating the prevalence of foodborne bacteria in irrigation water and evaluating their anti-microbial susceptibility. METHODS AND RESULTS: Surface water (n = 66 sites) and groundwater (n = 40 sites) samples were collected from the Gyeongi and Gangwon provinces of South Korea during April, July, and October 2019. To evaluate the safety of water, fecal indicators (Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were examined. E. coli isolates from water were further tested for antimicrobial susceptibility using VITEK2 system. Overall, detection rate of foodborne pathogens in July was highest among three months. The prevalence of pathogenic E. coli (24%), Salmonella (3%), and L. monocytogenes (3%) was higher in surface water, while only one ground water site was contained with pathogenic E. coli (2.5%). Of the 343 E. coli isolates, 22.7% isolates were resistant to one or more antimicrobials (ampicillin (18.7%), trimethoprim-sulfamethoxazole (7.0%), and ciprofloxacin (6.7%)). CONCLUSION: To enhance the safety of agricultural products, it is necessary to frequently monitor the microbial quality of water.

Improving the Microbial Safety of Fresh-Cut Endive with a Combined Treatment of Cinnamon Leaf Oil Emulsion Containing Cationic Surfactants and Ultrasound

  • Park, Jun-Beom;Kang, Ji-Hoon;Song, Kyung Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.503-509
    • /
    • 2018
  • Endive is widely consumed in a fresh-cut form owing to its rich nutritional content. However, fresh-cut vegetables are susceptible to contamination by pathogenic bacteria. This study investigated the antibacterial activities of the combined treatment of cinnamon leaf oil emulsion containing cetylpyridinium chloride or benzalkonium chloride (CLC and CLB, respectively) as a cationic surfactant and ultrasound (US) against Listeria monocytogenes and Escherichia coli O157:H7 on endive. The combined treatment of CLC or CLB with US reduced the population of L. monocytogenes by 1.58 and 1.47 log colony forming units (CFU)/g, respectively, and that of E. coli O157:H7 by 1.60 and 1.46 log CFU/g, respectively, as compared with water washing treatment. The reduction levels of both pathogens were higher than those observed with 0.2 mg/ml sodium hypochlorite. In addition, the combined treatment showed no effect on the quality of the fresh-cut endive (FCE). In particular, the degree of browning in FCE was less for the treatment group than for the control and water washing treatment groups. Thus, cationic surfactant-based cinnamon leaf oil emulsions combined with US may be an effective washing treatment for the microbial safety of FCE.

Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water (농업용수의 미생물학적 안전성 조사 및 위생지표세균 농도와 병원성미생물 검출률과의 상관관계 분석)

  • Hwang, Injun;Lee, Tae Kwon;Park, Daesoo;Kim, Eunsun;Choi, Song-Yi;Hyun, Jeong-Eun;Rajalingam, Nagendran;Kim, Se-Ri;Cho, Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.248-259
    • /
    • 2021
  • BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh produce-related outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 - 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%- site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.

Efficacy of Sodium Hypochlorite against E. coli on Various Leafy Green and Stem Vegetables (차아염소산나트륨이 비가열 엽경채류 중 병원성 대장균 사멸에 미치는 영향)

  • Su-jin Kim;Woo-Suk Bang
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2023
  • This study was conducted to evaluate the efficacy of sodium hypochlorite in eliminating Escherichia coli strains from leafy green and stem vegetables, which are frequently sold at community service centers. A cocktail of non-pathogenic E. coli and enterohaemorrhagic E. coli (E. coli O157:H7) was used to artificially contaminate the vegetables (initial numbers of bacteria 7-8 log CFU/g). The contaminated vegetables were soaked in sodium hypochlorite for 5 min and then washed three times with running water. After the treatment, number of viable bacterial cells on the vegetables was estimated. Sodium hypochlorite treatment reduced the E. coli population by 1-2 log CFU/g on leafy green and stem vegetables, a significant reduction from the initial number. Further, sodium hypochlorite showed better antimicrobial efficacy for leaves with a larger surface area, less roughness, and softness. There was no significant difference in the antimicrobial effect between 100 and 200 mg/kg of sodium hypochlorite. Therefore, it is not necessary to increase sodium hypochlorite concentration than the level suggested in the school meal hygiene management guidelines. However, sodium hypochlorite treatment is not sufficient to achieve a safe level of microorganisms on leafy green and stem vegetables since they generally have a high abundance of microorganisms on their surface. Thus, an alternative cooking method for fresh leafy green and stem vegetables in summer should be developed to ensure they are safe for consumption.

Isolation and Identification of Pathogenic Bacteria from Spinach (시금치로부터 병원성세균의 분리 및 동정)

  • Kim, Hye-Jung;Kim, Young-Hoon;Lee, Dong-Sun;Paik, Hyun-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Raw and washed spinaches were tested to evaluate the incidences of Aeromonas hydrophila, Escherichia coli O157:H7, Plesiomonas shigelloides, Pseudomonas aeruginosa, Salmonella spp., Shigella spp., Yersinia enterocolitica, Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Listeria monocytogenes, and Staphylococcus aureus. Four pathogenic bacteria were isolated from spinach samples, and identified by morphological and biochemical methods, including API and ATB identification systems. Isolates from MacConkey, Cereus Selective, Clostridium Perfringens, and Baird-Parker agar media were in 99.9, 99.8, 99.9, and 97.8% agreements with A. hydrophila, B. cereus, C. perfringens, and S. aureus at the species level, respectively. SET-RPLA revealed, among the five strains of S. aureus isolates, two produced type A enterotoxin. All five strains of B. cereus isolates produced enterotoxin as revealed with CRET-RPLA.

Growth of Seeded Escherichia coli in Rewetted Cattle Waste Compost of Different Stages

  • Hanajima, D.;Kuroda, K.;Fukumoto, Y.;Haga, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.278-282
    • /
    • 2004
  • Compost is used mainly as an organic fertilizer, but it is also used as bedding material for cattle. Dairy cattle have been identified as a main reservoir of pathogenic Escherichia coli O157:H7. Further, E. coli is regarded as an environmental pathogen that causes bovine clinical mastitis. Hence, its growth in compost spread or compost bedding should be avoided. Physical and chemical conditions, available nutrients and microflora in compost change greatly during the composting process. Since pathogen growth in compost seems to be related to these changes, we assessed the possibility of E. coli growth in compost samples collected at 0, 7, 13, 22, 41, 190 and 360 d. Cattle waste composts with and without added tofu residue were collected from static piles and immediately air-dried. Compost samples were inoculated with a pure culture of E. coli, the moisture content was adjusted to 50%, and the samples were incubated for 5 d at $30^{\circ}C$. The numbers of E. coli in compost before and after incubation were determined by direct plating on Chromocult coliform agar. Almost all compost samples supported E. coli growth. Samples collected during or immediately after the thermophilic phase (day 7) showed the highest growth. Growth in samples more than 13 d old were not significantly different from those of aged compost samples. The addition of tofu residue gave a higher growth than its absence in younger samples collected prior to 13 d. To minimize the risk of environmental mastitis, the use of compost in the initial stage of the process is better avoided.

Characteristics of Bacteriophage Isolates and Expression of Shiga Toxin Genes Transferred to Non Shiga Toxin-Producing E. coli by Transduction

  • Park, Da-Som;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.710-716
    • /
    • 2021
  • A risk analysis of Shiga toxin (Stx)-encoding bacteriophage was carried out by confirming the transduction phage to non-Stx-producing Escherichia coli (STEC) and subsequent expression of the Shiga toxin genes. The virulence factor stx1 was identified in five phages, and both stx1 and stx2 were found in four phages from a total of 19 phage isolates with seven non-O157 STEC strains. The four phages, designated as ϕNOEC41, ϕNOEC46, ϕNOEC47, and ϕNOEC49, belonged morphologically to the Myoviridae family. The stabilities of these phages to temperature, pH, ethanol, and NaClO were high with some variabilities among the phages. The infection of five non-STEC strains by nine Stx-encoding phages occurred at a rate of approximately 40%. Non-STEC strains were transduced by Stx-encoding phage to become lysogenic strains, and seven convertant strains had stx1 and/or stx2 genes. Only the stx1 gene was transferred to the receptor strains without any deletion. Gene expression of a convertant having both stx1 and stx2 genes was confirmed to be up to 32 times higher for Stx1 in 6% NaCl osmotic media and twice for Stx2 in 4% NaCl media, compared with expression in low-salt environments. Therefore, a new risk might arise from the transfer of pathogenic genes from Stx-encoding phages to otherwise harmless hosts. Without adequate sterilization of food exposed to various environments, there is a possibility that the toxicity of the phages might increase.

Prevalence of Pathogenic Bacteria in Livestock Manure Compost and Organic Fertilizer (가축분퇴비와 유기질비료에서 병원성박테리아의 분포도 분석)

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Yun, Jong-Chul;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.824-829
    • /
    • 2011
  • In recent years, there has been an increasing public concern about fecal contamination of water, air and agricultural produce by pathogens residing in organic fertilizers such as manure, compost and agricultural by-products. Efforts are now being made to control or eliminate the pathogen populations at on-farm level. Development of efficient on-farm strategies to mitigate the potential risk posed by the pathogens requires data about how the pathogens prevail in livestock manure composts and organic fertilizers. Microbiological analysis of livestock manure composts and organic fertilizers obtained from 32 and 28 companies, respectively, were conducted to determine the total aerobic bacteria count, coliforms, Escherichia coli count and the prevalence of Staphylococcus aureus, Bacillus cereus, Salmonella spp., Escherichia coli O157:H7, Listeria monocytogenes, and Cronobacter sakazakii. The total aerobic bacteria counts in the livestock manure composts and organic fertilizers were in the range of 7 to $9log\;CFU\;g^{-1}$ and 4 to $6log\;CFU\;g^{-1}$, respectively. In the livestock manure composts, coliforms and E. coli were detected in samples obtained from 4 and 2 companies, respectively, in the range of 2 to $5log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In the organic fertilizers, coliforms and E. coli were detected in samples obtained from 4 and 1 companies, respectively, in the range of 1 to $3log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In 3 out 32 compost samples, B. cereus was detected, while other pathogens were not detected. In 28 organic fertilizers, no pathogens were detected. The complete composting process can result in the elimination of pathogens in livestock manure compost and organic fertilizer. The results of this study could help to formulate microbiological guidelines for the use of compost in environmental-friendly agriculture. This research provides information regarding microbiological quality of livestock manure compost and organic fertilizer.