• 제목/요약/키워드: Pathogen Removal

검색결과 26건 처리시간 0.019초

침지형 MF 중공사막을 이용한 하수 2차 처리수의 재이용 연구 (Treatment of Secondary Municipal Wastewater by Submerged Hollow Fiber MF Membranes for Water Reuse)

  • 현승훈;김응도;홍승관;안원영;임성균;김건태
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.47-52
    • /
    • 2005
  • This study was conducted to evaluate the performance of submerged hollow fiber MF processes to treat secondary wastewater for water reuse. Specifically, membrane productivity and filtrate water quality were investigated under various operating conditions (i.e. flux, recovery, and backwash rate) at pilot-scale. Membrane fouling became more severe with increasing flux and recovery, suggesting that low flux operation (< 25 LMH) was desirable. At high flux operating(> 37.5 LMH), increasing backwash rate showed only limited success. The biofouling, quantified by PEPA and BFHPC, was also significant in wastewater reclamation, and biogrowth control by chlorine, were necessary to improve membrane productivity. Filtrate water qualities are in good compliance with water reuse regulations regardless of operating conditions (flux, recovery and backwash rate). Particle (e.g. turbidity) removal ranged from 89 to 98%, while only 11 to 21% of organics (e.g. NPDOC) were removed by MF membrane. Only small improvement in biostability (e.g. AOC) was achieved by MF system, and thus, without post disinfection, significant microorganisms might be present in the filtrate due to regrowth. Lastly, in order to further investigate pathogen removal, controlled microbial challenge tests were performed by monitoring Giardia, Cryptosporidium, bacteria and virus, and showed relatively good microbial removal.

Control of Soybean Sprout Rot Caused by Pythium deliense in Recirculated Production System

  • Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • 제19권6호
    • /
    • pp.280-283
    • /
    • 2003
  • A soybean-sprout rot epidemic occurred in a mass production soybean sprout factory in 2000 and 2001 in Korea, which caused up to 20% production loss. Among the causal pathogenic bacteria and fungi, Pythium deliense was found to be the dominant pathogen of severe root and hypocotyls rot, particularly in recirculating water system. An average of 90% of the isolated fungi from the rotted sprout on potato dextrose agar were Pythium sp. The fungal density of Pythium in the sampled water was monitored in the recycled water system for 1 year using a selective medium (com meal agar with Pimaricin, 10 mg; Rifampicin, 10 mg; and Ampicillin, 100 mg per 1 liter). The drained water from the soybean-sprout cultivation always had a certain amount of fungus in it. The removal of Pythium from the recycling water system must be thorough, safe, and environment friendly. However, the pathogen in the water was easily found even after ozone and chlorine treatments, which were devised on the recycling system for the removal of microorganisms. 5-$\mu\textrm{m}$ pore size filter was applied and was able to successfully control the disease. As the sprout industry increasingly shifts into mass production, the demand for water will increase continuously. Recycling water for sprout production is eco-friendly. However, a process must be devised to be able to first decompose organic matters before Pythium zoospores are filtered.

Successful Treatment of Catheter Related Blood Stream Infection By Millerozyma farinosa with Micafungin: A Case Report

  • Hong, Sun In;Suh, Young Sun;Kim, Hyun-Ok;Bae, In-Gyu;Shin, Jong Hee;Cho, Oh-Hyun
    • Infection and chemotherapy
    • /
    • 제50권4호
    • /
    • pp.362-366
    • /
    • 2018
  • Millerozyma farinosa (formerly Pichia farinosa) is halotolerant yeast mainly found in food and ubiquitous in the environment. It was a rare yeast pathogen, but it has recently emerged as a cause of fungemia in immunocompromised patients. Optimal therapy for invasive fungal infection by this pathogen remains unclear. We report a case of catheter related blood stream infection caused by M. farinosa in a 71-year-old patient who recovered successfully after removal of the central venous catheter and treatment with micafungin.

급속여과공정에서 여과수질 저하원인 및 개선방안 (Cause of Filtrate Deterioration and Its Improvement in Rapid Filtration)

  • 김진근;이송희;김재원
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.333-339
    • /
    • 2010
  • Particle removal is an important step taken at water treatment plants (WTPs) for the safety of tap water due to its proportionality to the pathogen inactivation. Government promulgated a treatment technique for the optimization of filtration including continuous turbidity monitoring using on-line turbidimeters. Based on the turbidity measurements of 460 filters at 31 WTPs operated by K-water, the evaluation of filtration performance and the investigation of major causes related to particle breakthrough were explored. 98.1 % of the filters had an effluent turbidity measurement which was less than 0.1 NTU, but turbidity breakthrough of more than 0.3 NTU was noticed occasionally which is in violation of AWWA 5-Star guidelines. It was shown that the optimization of coagulation, filter-to-waste, the observance of optimal filtration velocity and backwashing process based on filtrate turbidity were crucial for the improvement of filtrate.

정밀여과(MF)막 미생물 제거율 모니터링을 위한 막 완전성시험 (Direct and Indirect Membrane Integrity Tests for Monitoring Microbial Removal by Microfiltration)

  • 홍승관
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.801-806
    • /
    • 2004
  • The pilot study was conducted to (i) investigate the ability of various membrane integrity monitoring methods to detect changes in membrane integrity during operation, and (ii) determine the impact of membrane damage on microbial removal by microfiltration. Two variations of air pressure hold tests were investigated for direct integrity monitoring: pressure decay (PD) and diffusive air flow (DAF) tests which are most commonly used integrity tests for microfiltration (MF) membranes. Both PD and DAF tests were sensitive enough to detect one damaged fiber out of 66,000 under field operaing conditions. Indirect integrity monitoring such as turbidity and particle counting, however, responded poorly to defects in membrane systems. Microbial challenge study was performed using both new and deliberately damaged membranes, as well as varying the state of fouling of the membrane. This study demonstrated that MF membrane with nominal pore size $0.2{\mu}m$ was capable of removing various pathogens including coliform, spore, and cryptosporidium, at the level required by drinking water regulations, even when high operating pressures were applied. A sharp decrease in average log reduction value (LRV) was observed when one fiber was damaged, emphasizing the importance of membrane integrity in control of microbial contamination.

잔류 의약품류의 제거 및 미생물학적 안전성을 고려한 하수 재이용 기술로서의 UV 및 UV/$H_2O_2$ 공정의 적용성 (Applicability of UV and UV/$H_2O_2$ Processes in the Control of Pharmaceuticals and Personal Care Products and Microbiological Safety for Water Reuse)

  • 김일호;타나카 히로아키
    • 대한환경공학회지
    • /
    • 제32권7호
    • /
    • pp.722-729
    • /
    • 2010
  • 하수 재이용에 대한 관심이 급부상하고 있는 가운데, 재이용수의 미량물질 등에 의한 화학적 리스크와 더불어 미생물학적 안전성에 대한 고려가 요구되고 있다. 본 연구에서는 벤치스케일의 연속식 실험장치를 이용, 미량물질 중 최근 주목을 받고 있는 의약품류를 대상으로, UV처리공정의 의약품류 제거효과 및 미생물학적 안전성의 달성 가능성을 고찰하였다. 시험수로 이용한 하수 2차 처리수중에서는 항생물질, 해열진통제 등 38종의 의약품류가 수 ng/L에서 수백 ng/L의 범위로 검출되었으며, 이를 대상으로 하여 UV 및 UV/$H_2O_2$ 처리실험을 행한 결과, UV 단독처리에 의한 의약품류의 효과적인 제거에는 상당량의 UV조사량이 필요할 것으로 예상되었다. 반면, UV/$H_2O_2$ 공정의 경우 $H_2O_2$의 첨가농도를 약 1 mg/L에서 6mg/L까지 증가시킴에 따라 각 의약품류의 제거율은 점점 증가하는 것으로 나타났다. 한편, $923\;mJ/cm^2$의 UV 조사량과 6.2 mg/L의 $H_2O_2$를 병용한 UV/$H_2O_2$ 처리는 Naproxen(>89%)외 모든 의약품류의 농도를 90% 이상까지 감소시킬 수 있었다. 또한 이 운전조건은 현행 하수처리장 유출수중의 대장균군에 대한 규제농도($3,000/cm^3$)를 기준으로 하였을 때, 4~5 log의 불활성화를 달성할 수 있을 것으로 예상되어, 하수 재이용에 요구되는 California Title 22의 criteria를 만족시킬 수 있을 것으로 판단되었다.

Selective colonization and removal of senescent flowers of zucchini squash by Trichoderma hrzianum YC459, a biocontrol agent for gray mold, Botrytis cinerea

  • Kim, Geun-Gon;Chung, Young-Ryun
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.90.2-91
    • /
    • 2003
  • In commercial greenhouses, senescent flower petals or flowers of vegetables such as tomato, strawberry, hot pepper and zucchini squash were blighted to be removed from fruits within five days after spraying of Trichoderma harzianum YC459 (TORY), a biocontrol agent for the gray mold rot of vegetables caused by B. cinerea The mechanism for selective colonization of senescent floral tissues by T. harzianum YC459 was elucidated using fresh and senescent (Hays and 14days after flowering, respectively) floral tissues of zucchini squash (Cucurbita moschata Duchesne). The spores of T. hrzianum YC459 were produced more on agar and liquid culture media supplemented with 5% dry powder of senescent floral tissues than fresh tissues during 15days. Mycelial growth was also much better in the media with senescent tissues than with fresh tissues. Enzyme activities of amylase, polygalacturonase and cellulase in the liquid media which might be involved in the colonization of tissues by T. harzianum YC459 were compared. The activities of three enzymes were much higher in the media with senescent floral tissues than with fresh floral tissues reaching to the maximum during 9 to 12days of incubation. Based on the results, the removal of senescent floral tissues, a possible inoculum source of the pathogen, may be another mechanism for biocontrol of gray mold rot of vegetables by T. harzianum YC459.

  • PDF

자외선 강도 산정 모델과 영향 인자에 관한 연구 (A Study on the UV Intensity Models and their Affecting Factors)

  • 김두일;최영균;김성홍
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.421-427
    • /
    • 2008
  • UV disinfection is widely used in water treatment facilities and wastewater treatment plant because of its effectiveness to removal of pathogen and Giardia which is resistant to traditional chemical disinfection. As a design and performance tool of UV disinfection system, 3 dimensional UV intensity models were composed and simulated to compare each other and to find affecting factors in this study. Reflection, refraction and absorption are important parameters in UV intensity model and MPSS and MSSS model can reflect these parameters while LSI model can not. Absorption is the most important parameters among the reflection, refraction, absorption and shadowing so, this should not be neglect. Based on this simulation, shadowing effect is negligible when the number of installed lamp is a few but, this effect can not be neglectable when the number of installed lamp is quite a few. The errors according to shadowing effect is increased as the number of lamp installed increased.

비정돈 환경의 표면 소독을 위한 실현성 예측 기반의 장애물 제거 계획법 및 접촉식 방역 로봇 시스템 (Feasibility Prediction-Based Obstacle Removal Planning and Contactable Disinfection Robot System for Surface Disinfection in an Untidy Environment)

  • 강준수;이인제;정완균;김기훈
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.283-290
    • /
    • 2021
  • We propose a task and motion planning algorithm for clearing obstacles and wiping surfaces, which is essential for surface disinfection during the pathogen disinfection process. The proposed task and motion planning algorithm determines task parameters such as grasping pose and placement location during the planning process without using pre-specified or discretized values. Furthermore, to quickly inspect many unit motions, we propose a motion feasibility prediction algorithm consisting of collision checking and an SVM model for inverse mechanics and self-collision prediction. Planning time analysis shows that the feasibility prediction algorithm can significantly increase the planning speed and success rates in situations with multiple obstacles. Finally, we implemented a hierarchical control scheme to enable wiping motion while following a planner-generated joint trajectory. We verified our planning and control framework by conducted an obstacle-clearing and surface wiping experiment in a simulated disinfection environment.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.