Recent studies on automatic parking have actively adopted the technology developed for mobile robots. Among them, the path planning scheme plans a route for a vehicle to reach a target parking position while satisfying the kinematic constraints of the vehicle. However, previous methods require a large amount of computation and/or cannot be easily applied to different environmental conditions. Therefore, there is a need for a path planning scheme that is fast, efficient, and versatile. In this study, we use a multi-dimensional path grid map to solve the above problem. This multi-dimensional path grid map contains a route which has taken a vehicle's kinematic constraints into account; it can be used with the $A^*$ algorithm to plan an efficient path. The proposed method was verified using Prescan which is a simulation program based on MATLAB. It is shown that the proposed scheme can successfully be applied to both parallel and vertical parking in an efficient manner.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.9
/
pp.3194-3210
/
2022
Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.
A new approach based on artificial potential function is proposed for the obstacle avoidance of redundant manipulators. Unlike the so-called "global" path planning method, which requires expensive computation for the path search before the manipulator starts to move, this new approach, "local" path planning, researches the path in real-time using the local distance information. Previous use of artificial potential function has exhibited local minima in some complex environments. This thesis proposes a potential function that has no local minima even for a cluttered environment. This potential function has been implemented for the collision avoidance of a redundant robot in Simulation. The simulation also employ an algorithm that eliminates collisions with obstacles by calculating the repulsive potential exerted on links, based on the shortest distance to object.
Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.39
no.12
/
pp.1124-1132
/
2011
This paper deals with smooth path generation using B-spline for fixed-wing unmanned aerial vehicles manuevering in 2D environment. Hexagonal cell representation is employed to model the 2D environment, which features increased connectivity among cells over square cell representation. Subsequently, hexagonal cell representation enables smoother path generation based on a discrete sequence of path from the path planner. In addition, we present an on-line path smoothing algorithm incorporating B-spline path templates. The path templates are computed off-line by taking into account all possible path sequences within finite horizon. During on-line implementation, the B-spline curves from the templates are stitched together repeatedly to come up with a reference trajectory for UAVs. This method is an effective way of generating smooth path with reduced on-line computation requirement, hence it can be implemented on a small low-cost autopilot that has limited computational resources.
Robot navigation allows robot mobility. Therefore, mobility is an area of robotics that has been actively investigated since robots were first developed. In recent years, interest in personal service robots for homes and public facilities has increased. As a result, robot navigation within the home environment, which is an indoor environment, is being actively investigated. However, the problem with conventional navigation algorithms is that they require a large computation time for their building mapping and path planning processes. This problem makes it difficult to cope with an environment that changes in real-time. Therefore, we propose a humanoid robot navigation algorithm consisting of an image processing and optimization algorithm. This algorithm realizes navigation with less computation time than conventional navigation algorithms using map building and path planning processes, and can cope with an environment that changes in real-time.
We propose centralized server based QoS routing schemes, where a route server is responsible for determining QoS paths on behalf of all the routers in a routing domain. In the proposed server based schemes, the dynamic link QoS state information, which is required for a QoS path computation, is implicitly maintained at route server as it assigns or gets back QoS paths. By maintaining the network state information this way, we may not only eliminate the overhead to exchange network state update message but also achieve higher routing performance by utilizing accurate network state information in path computation. We discuss path caching techniques for reducing the amount of path computation overhead at the route server, and evaluate the performance of the proposed schemes using simulation. The simulation results show that the path caching schemes may significantly reduce the route server load. The proposed schemes are also compared to the distributed QoS routing schemes proposed in the literature. It has been shown that the proposed server based schemes not only enhance the routing performance, but they are also competitive with respect to routing overheads.
In route guidance systems fastest-path routing has typically been adopted because of its simplicity. However, empirical studies on route choice behavior have shown that drivers use numerous criteria in choosing a route. The objective of this study is to develop computationally efficient algorithms for identifying a manageable subset of the nondominated (i.e. Pareto optimal) paths for real-time vehicle routing which reflect the drivers' preferences and route choice behaviors. We propose two pruning algorithms that reduce the search area based on a context-dependent linear utility function and thus reduce the computation time. The basic notion of the proposed approach is that ⅰ) enumerating all nondominated paths is computationally too expensive, ⅱ) obtaining a stable mathematical representation of the drivers' utility function is theoretically difficult and impractical, and ⅲ) obtaining optimal path given a nonlinear utility function is a NP-hard problem. Consequently, a heuristic two-stage strategy which identifies multiple routes and then select the near-optimal path may be effective and practical. As the first stage, we utilize the relaxation based pruning technique based on an entropy model to recognize and discard most of the nondominated paths that do not reflect the drivers' preference and/or the context-dependency of the preference. In addition, to make sure that paths identified are dissimilar in terms of links used, the number of shared links between routes is limited. We test the proposed algorithms in a large real-life traffic network and show that the algorithms reduce CPU time significantly compared with conventional multi-criteria shortest path algorithms while the attributes of the routes identified reflect drivers' preferences and generic route choice behaviors well.
This paper presents a study of path-planning method for AGV(automated guided vehicle) based on path-tracking. It is important to find an optimized path among the AGV techniques. This is due to the fact that the AGV is conditioned to follow the predetermined path. Consequently, the path-planning method is implemented directly affects the whole AGV operation in terms of its performance efficiency. In many existing methods are used optimization algorithms to find optimized path. However, such methods are often prone with problems in handling the issue of inefficiency that exists in system's operation due to inherent undue time delay created by heavy load of complex computation. To solve such problems, we offer path-planning method using modified binary tree. For the purpose of our experiment, we initially designed a AGV that is equiped with laser navigation, two encoders, a gyro sensor that is meant to be operated within actual environment with given set of constrictions and layout for the AGV testing. The result of our study reflects the fact that within such environments, the proposed method showed improvement in its efficiency in finding optimized path.
Transactions of the Korean Society of Automotive Engineers
/
v.22
no.3
/
pp.241-249
/
2014
This paper presents a path planning algorithm of an autonomous vehicle (ADAM III) for collision avoidance in the presence of multiple obstacles. Under the requirements that a low-cost GPS is used and its computation should be completed with a sampling time of sub-second, heading angle estimation is proposed to improve performance degradation of its measurement and a hierarchical structure for path planning is used. Once it is decided that obstacle avoidance is necessary, the path planning consists in three steps: waypoint generation, trajectory candidate generation, and trajectory selection. While the waypoints and the corresponding trajectory candidates are generated based on position of obstacles, the final desired trajectory is determined with considerations of kinematic constraints as well as an optimal condition in a term of lateral deviation. Finally the proposed algorithm was validated experimentally through field tests and its demonstration was performed in Autonomous Vehicle Competition (AVC) 2013.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.