• Title/Summary/Keyword: Path replanning

Search Result 6, Processing Time 0.022 seconds

Real-time Path Replanning for Unmanned Aerial Vehicles: Considering Environmental Changes using RRT* and LOSPO (무인 항공기를 위한 실시간 경로 재계획 기법: RRT*와 LOSPO를 활용한 환경 변화 고려)

  • Jung Woo An;Ji Won Woo;Hyeon Seop Kim;Sang Yun Park;Gyeon Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.365-373
    • /
    • 2023
  • Unmanned aerial vehicles are widely used in various fields, and real-time path replanning is a critical factor in enhancing the safety and efficiency of these devices. In this paper, we propose a real-time path replanning technique based on RRT* and LOSPO. The proposed technique first generates an initial path using the RRT* algorithm and then optimizes the path using LOSPO. Additionally, the optimized path can be converted into a trajectory that considers actual time and the dynamic limits of the aircraft. In this process, environmental changes and collision risks are detected in real-time, and the path is replanned as needed to maintain safe operation. This method has been verified through simulation-based experiments. The results of this paper make a significant contribution to the research on real-time path replanning for UAVs, and by applying this technique to various situations, the safety and efficiency of UAVs can be improved.

An Approach to Global Path Replanning Method Considering 4D Environmental Information (4D 환경정보를 반영한 광역 경로수정계획 기법에 관한 연구)

  • Kwak, Dong Jun;Shin, Jongho;Kim, Chong Hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.779-788
    • /
    • 2016
  • In this paper, a global path replanning method is proposed in order to plan a global path minimizing the risk of the unmanned vehicle on the battlefield. We first introduce 4D environmental information consisting of mobility, visibility, kill, and hit attributes, and a unified threat map and a mobility map are defined by the four attributes. Using the mobility map, the unmanned vehicle can find the shortest path on the traversable area. And then taking into account the deterrent according to the type of the unmanned vehicle on the integrated threat map, the vehicle can generate a route to suppress or avoid the threat of enemy as well. Moreover, we present a waypoints bypassing method to exclude unnecessary waypoints rather than the mission point when planning paths for the multiple waypoints.

Optimal Path Planning Algorithm for Visiting Multiple Mission Points in Dynamic Environments (동적 변화 환경에서 다중 임무점 방문을 위한 최적 경로 계획 알고리즘)

  • Lee, Hohyeong;Chang, Woohyuk;Jang, Hwanchol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • The complexity of path planning for visiting multiple mission points is even larger than that of single pair path planning. Deciding a path for visiting n mission points requires conducting $n^2+n$ times of single pair path planning. We propose Multiple Mission $D^*$ Lite($MMD^*L$) which is an optimal path planning algorithm for visiting multiple mission points in dynamic environments. $MMD^*L$ reduces the complexity by reusing the computational data of preceding single pair path planning. Simulation results show that the complexity reduction is significant while its path optimality is not compromised.

Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning

  • Park, Je-Kwan;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1324-1342
    • /
    • 2020
  • Various modified algorithms of rapidly-exploring random tree (RRT) have been previously proposed. However, compared to the RRT algorithm for collision avoidance with global and static obstacles, it is not easy to find a collision avoidance and local path re-planning algorithm for dynamic obstacles based on the RRT algorithm. In this study, we propose boundary-RRT*, a novel-algorithm that can be applied to aerial vehicles for collision avoidance and path re-planning in a three-dimensional environment. The algorithm not only bounds the configuration space, but it also includes an implicit bias for the bounded configuration space. Therefore, it can create a path with a natural curvature without defining a bias function. Furthermore, the exploring space is reduced to a half-torus by combining it with simple right-of-way rules. When defining the distance as a cost, the proposed algorithm through numerical analysis shows that the standard deviation (σ) approaches 0 as the number of samples per unit time increases and the length of epsilon ε (maximum length of an edge in the tree) decreases. This means that a stable waypoint list can be generated using the proposed algorithm. Therefore, by increasing real-time performance through simple calculation and the boundary of the configuration space, the algorithm proved to be suitable for collision avoidance of aerial vehicles and replanning of local paths.

Real-time path replanning in dynamic environments (동적 환경에서의 실시간 경로 설정 방법)

  • Kwak, Jae-Hyuk;Lim, Joon-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.1-8
    • /
    • 2006
  • Many researches on path planning and obstacle avoidance for the fundamentals of mobile robot have been done recently. Informations from various sensors can be used to find obstacles and plan feasible path. In spite of many solutions of finding optimal path, each can be applied in only a constrained condition. This means that it is difficult to find university good algorithm. An optimal path with a complicated computation generates a time delay which cannot avoid moving obstacles. In this paper, we propose an algorithm of path planning and obstacle avoidance for mobile robot. We call the proposed method Random Access Sequence(RAS) method. In the proposed method, a small region is set first and numbers are assigned to its neighbors, then the path is selected using these numbers and cumulative numbers. It has an advantage of fast planning time and completeness of path if one exists. This means that new path selection may be possible within short time and that helps a robot to avoid obstacle in dynamic environments. Using the information of the start and destination position, the RAS can be performed for collision-free navigation by reforming feasible paths repeatedly in dynamic environments.