• Title/Summary/Keyword: Path protection and restoration

Search Result 22, Processing Time 0.019 seconds

Shared Protection of Lightpath with Guaranteed Switching Time over DWDM Networks

  • Chen Yen-Wen;Peng I-Hsuan
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.228-233
    • /
    • 2006
  • Survivability is a very important requirement for the deployment of broadband networks because out of service links can affect volumes of traffic even if it is a very short time. And the data paths of broadband networks, which are critical for traffic engineering, are always necessary to be well protected. The procedure of protection or restoration for a path is initiated when failure is detected within the working path. In order to minimize the influence on transmission quality caused by the failure of links and to provide a definite time for the recovery from the failure, the protection switching time (PST) should be carefully considered in the path arrangement. Several researches have been devoted to construct the protection and restoration schemes of data paths over dense wavelength division multiplexing (DWDM) networks, however, there was rare research on the design of data paths with guaranteed protection switching time. In this paper, the PST-guaranteed scheme, which is based on the concept of short leap shared protection (SLSP), for the arrangement of data paths in DWDM networks is proposed. The proposed scheme provides an efficient procedure to determine a just-enough PST-guaranteed backup paths for a working path. In addition to selecting the PST-guaranteed path, the network cost is also considered in a heuristic manner. The experimental results demonstrate that the paths arranged by the proposed scheme can fully meet the desired PST and the required cost of the selected path is competitive with which of the shared path scheme.

Analysis of the Bandwidth Consumed by Restoration Paths for Service Guarantee in the Protection Switching Scheme (보호 스위칭에 의한 경로 설정에 있어서 서비스 보장을 위한 복구 경로의 소비 대역 분석)

  • Lee, Hwang-Kyu;Hong, Sug-Won
    • The KIPS Transactions:PartC
    • /
    • v.10C no.2
    • /
    • pp.155-162
    • /
    • 2003
  • Fast restoration time and service guarantee are the important goals to achieve the network reliability. In the protection switching scheme, one way to guarantee service fro an application session if a network happens to fail is to establish the restoration path that amounts to the same bandwidth of the working path of the session at the same time. When we setup the restoration path, we can reduce the bandwidth consumption by the restoration path if the path can share the bandwidth required by the other paths. This paper explains the methods how to determine the shared bandwidth of the restoration path in the protection switching scheme, given the maximum bandwidth assigned to a link along the working path. We point out that such sharing algorithm can not reduce the bandwidth consumption by the restoration paths in some cases, which contradict the general conception. We explain why this can happen, and show the simulation results in real network topologies to prove our arguments. We explain the reason of the failure of the sharing effect by the simple sharing algorithm. Finally we propose the way of how we can overcome the failure of the sharing effect, using the complete sharing algorithm based on the link database and showing the results.

MPLS Alternate Path Rerouting and Restoration (MPLS 대체 경로 재설정과 복구)

  • Lee Kil-Hung
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3 s.99
    • /
    • pp.401-408
    • /
    • 2005
  • We propose a new MPLS restoration scheme that uses network resources more efficiently and minimizes the backup path cost effectively. Contrary to other restoration strategies, the proposed restoration scheme starts the recovery action at the selected node of a working LSP. At LSP setup, the working and backup path cost is evaluated and the starting node of restoration is designated. By doing so, the restoration speed could be further increased and resource utilization could be maximized. We simulated the proposed scheme and compared with other restoration and protection schemes. The result shows that our scheme can provide fast restoration with acceptable delay and loss characteristics.

Protection and restoration path calculation method in T-SDN (Transport SDN) based on multiple ring-mesh topology (다중링-메시 토폴로지 기반 T-SDN(Transport SDN)에서 보호·복구 경로 계산 방식)

  • Hyuncheol Kim
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.3-8
    • /
    • 2023
  • Multi-domain optical transport networks are not fundamentally interoperable and require an integrated orchestration mechanism and path provision mechanism at the entire network level. In addition, ensuring network survivability is one of the important issues. MPLS-TP (Multi-Protocol Label Switching-Transport Profile) defines various protection/recovery methods as standards, but does not mention how to calculate and select protection/recovery paths. Therefore, an algorithm that minimizes protection/recovery collisions at the optical circuit packet integrated network level and calculates and sets a path that can be rapidly protected/recovered over the entire integrated network area is required. In this paper, we proposed an algorithm that calculates and sets up a path that can be rapidly protected and restored in a T-SDN network composed of multiple ring-mesh topology.

ATM Network Survivability Enhancement Scheme using Disjoint VP Groups (분리 VP 그룹을 이용한 ATM 망 생존도 향상 방안)

  • Lee, Gil-Heung;Choe, Yong-Hun;Park, Won-Seo;Lee, Jae-Yong;Lee, Sang-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.949-956
    • /
    • 1999
  • 이 논문에서는 ATM (Asynchronous Transfer Mode) 방식의 초고속망의 장애 발생 시 이용자 연결의 QoS (Quality of Service)를 고려하여 복구할 수 있게 하는 보호 망 설계 방안을 제시한다. 제시한 설계 방안에 기초한 비용과 복구 특성을 분석과 모의 실험을 통해 알아본다. 제안하는 망에서의 복구는 분리 VP 그룹 (Disjoint Virtual Path Group, DVPG) 을 사용하는 상태 독립적 (State- independent) 방식으로 복구된다. ATM 망의 운용 및 보호 VP 할당과 용량 배정 문제를 정의하고 이를 바탕으로 최소의 비용을 갖는 VP 망을 설계한다. 망의 고장 시 기존 노드간의 VP 연결은 미리 할당된 링크 또는 노드 분리 보호 VP 경로를 따라 간단한 복구 알고리즘에 의해 빠르게 복구된다. QoS의 고려는 추가 비용을 필요로 하지만 정확한 이용자 연결의 복구를 실현하며, 분리 VP 그룹의 적용은 비용을 상승시키지만, 빠른 복구와 복수의 고장에 대처할 수 있는 방안이 된다.Abstract A cost evaluation of protection scheme for VP-based ATM network is presented here and its related characteristics are evaluated. The proposed and evaluated scheme is a state-independent restoration scheme using a disjoint path group. For fast and simple restoration of failed connections, link disjoint or node disjoint VP groups (DVPG) were utilized in this paper. A VP assignment and capacity planning problem is formulated. When failure occurs, the failed working VPs are switched to the protection VPs of disjoint path groups with a simple restoration scheme. And, cost evaluation and restoration characteristics are presented. The consideration of multiple QoS (Quality of Service) levels and disjoint path group protection scheme require additional network cost but acquire fit and fast restoration.

Schemes to Overcome ATM VC Switch Failures using Backup Virtual Paths (예비 가상 경로를 이용한 ATM VC 교환기 고장 우회 방법)

  • Yoo, Young-Hwan;Ahn, Sang-Hyun;Kim, Chong-Sang
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.187-196
    • /
    • 2000
  • Failures in ATM networks can occur at virtual path (VP) links, virtual path switches, and virtual channel (VC) switches. Restoration schemes have been proposed for VP link and VP switch failures, however, none for VC switch failures. In general, VC switches are used for edge nodes in protection domains. Since even only one VC switch failure can cause a critical problem, new restoration schemes for VC switch failures are highly required. Restoration schemes at the VP level proposed so far can be categorized into those using the flooding algorithm and those using the backup virtual path (BVP) concept. Even though the latter cannot handle unpredictable failures, it has some advantages such as fast restoration and low spare capacity requirement. In this paper, we propose new restoration schemes using a new type of BVPs to handle VC switch failures. The simulation results show that the proposed schemes can restore virtual connection failures due to VC switch failures without degrading restorability for VP failures.

  • PDF

Efficient Protection/Restoration by Separation of Domains in Optical Networks (광 네트워크에서의 도메인 분리에 의향 효율적인 보호복구)

  • Yim Soon-Bin;An Hyun-Ki;Lee Tae-Jin
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.77-82
    • /
    • 2005
  • Protection of user service becomes increasingly important since even very short interruption of service due to link or node failure will cause huge data loss and incur tremendous restoration cost in high speed network environment. Thus fast and efficient protection and restoration is one of the most important issues to be addressed. Protection methods have been proposed to provide efficiency and stability in optical networks. In this paper, an original network is separated into several domains using Hamiltonian cycle. and link protection is performed on the cycles of the domains. We have shown that protection path length can be decreased up to $57{\%}$ with marginal increase of backup capacity. Our proposed method can provide high-speed protection with marginal increase of protection capacity.

Protection and Restoration of GMPLS LSP using CR-LDP Detours (CR-LDP 우회를 통한 GMPLS LSP의 보호 및 복구)

  • 김진형;정재일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12B
    • /
    • pp.1051-1059
    • /
    • 2003
  • The key feature of GMPLS is the provision of network resources and the automatic set-up of a path. And the mechanism of protection and restoration of a path is presented when network component fails. This paper suggests CR-LDP Static Detour Mechanism and Dynamic Detour Mechanism. CR-LDP Detours are a mechanism to set up detour paths automatically at every node to protect working path. Hence suggested mechanism performance is compared with existing mechanisms by computer simulation.

Variable Aggregation in the ILP Design of WDM Networks with Dedicated Protection

  • Tornatore, Massimo;Maier, Guido;Pattavina, Achille
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 2007
  • In wavelength-division-multiplexing(WDM) networks a link failure may cause the failure of several high-bit-rate optical channels, thereby leading to large data loss. Recently, various protection and restoration mechanisms have been proposed to efficiently deal with this problem in mesh networks. Among them, dedicated path protection(DPP) is a promising candidate because of its ultra-fast restoration time and robustness. In this work we investigate the issue of planning and optimization of WDM networks with DPP. Integer linear programming(ILP), in particular, is one of the most common exact method to solve the design optimization problem for protected WDM networks. Traditional ILP formalizations to solve this problem rely on the classical flow or route formulation approaches, but both these approaches suffer from a excessively high computational burden. In this paper, we present a variable-aggregation method that has the ability of significantly reducing the complexity of the traditional flow formulation. We compare also the computational burden of flow formulation with variable aggregation both with the classical flow and route formulations. The comparison is carried out by applying the three alternative methods to the optimization of two case-study networks.

Dynamic Survivable Routing for Shared Segment Protection

  • Tapolcai, Janos;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.198-209
    • /
    • 2007
  • This paper provides a thorough study on shared segment protection (SSP) for mesh communication networks in the complete routing information scenario, where the integer linear program (ILP) in [1] is extended such that the following two constraints are well addressed: (a) The restoration time constraint for each connection request, and (b) the switching/merging capacity constraint at each node. A novel approach, called SSP algorithm, is developed to reduce the extremely high computation complexity in solving the ILP formulation. Basically, our approach is to derive a good approximation on the parameters in the ILP by referring to the result of solving the corresponding shared path protection (SPP) problem. Thus, the design space can be significantly reduced by eliminating some edges in the graphs. We will show in the simulation that with our approach, the optimality can be achieved in most of the cases. To verify the proposed formulation and investigate the performance impairment in terms of average cost and success rate by the additional two constraints, extensive simulation work has been conducted on three network topologies, in which SPP and shared link protection (SLP) are implemented for comparison. We will demonstrate that the proposed SSP algorithm can effectively and efficiently solve the survivable routing problem with constraints on restoration time and switching/merging capability of each node. The comparison among the three protection types further verifies that SSP can yield significant advantages over SPP and SLP without taking much computation time.