• Title/Summary/Keyword: Path error

Search Result 904, Processing Time 0.025 seconds

Improved Maximum Access Delay Time, Noise Variance, and Power Delay Profile Estimations for OFDM Systems

  • Wang, Hanho;Lim, Sungmook;Ko, Kyunbyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4099-4113
    • /
    • 2022
  • In this paper, we propose improved maximum access delay time, noise variance, and power delay profile (PDP) estimation schemes for orthogonal frequency division multiplexing (OFDM) system in multipath fading channels. To this end, we adopt the approximate maximum likelihood (ML) estimation strategy. For the first step, the log-likelihood function (LLF) of the received OFDM symbols is derived by utilizing only the cyclic redundancy induced by cyclic prefix (CP) without additional information. Then, the set of the initial path powers is sub-optimally obtained to maximize the derived LLF. In the second step, we can select a subset of the initial path power set, i.e. the maximum access delay time, so as to maximize the modified LLF. Through numerical simulations, the benefit of the proposed method is verified by comparison with the existing methods in terms of normalized mean square error, erroneous detection, and good detection probabilities.

Development of a 3D Localization Algorithm Using Hull Geometry Information (선체 형상 정보를 활용한 3차원 위치인식 알고리즘 개발)

  • Mingyu Jang;Jinhyun Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.300-306
    • /
    • 2023
  • A hull-cleaning robot sticks to the surface of a vessel and moves for efficient cleaning. Precise path planning and tracking using the current position is crucial. Many robots rely on the INS algorithm, but errors accumulate. To fix this, GPS, sonar, and USBL are used, though with limitations. Selecting suitable sensors for the surface operation and accurate positioning algorithm are vital. In this study, we developed a robot position estimation algorithm using the structure of a ship. Problems that arise when expanding the 2D position estimation algorithm used in existing wall structures to 3D were evaluated and methods for solving them were proposed. In addition, we aimed to improve performance by deriving singularities that exist in the robot path and proposing an error correction algorithm based on the singularities.

SEM-based study on the impact of safety culture on unsafe behaviors in Chinese nuclear power plants

  • Licao Dai;Li Ma;Meihui Zhang;Ziyi Liang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3628-3638
    • /
    • 2023
  • This paper uses 135 Licensed Operator Event Reports (LOER) from Chinese nuclear plants to analyze how safety culture affects unsafe behaviors in nuclear power plants. On the basis of a modified human factors analysis and classification system (HFACS) framework, structural equation model (SEM) is used to explore the relationship between latent variables at various levels. Correlation tests such as chi-square test are used to analyze the path from safety culture to unsafe behaviors. The role of latent error is clarified. The results show that the ratio of latent errors to active errors is 3.4:1. The key path linking safety culture weaknesses to unsafe behaviors is Organizational Processes → Inadequate Supervision → Physical/Technical Environment → Skill-based Errors. The most influential factors on the latent variables at each level in the HFACS framework are Organizational Processes, Inadequate Supervision, Physical Environment, and Skill-based Errors.

The Study on Empirical Propagation Path Loss Model in the Antler Terminal Environment (엔틀러 터미널 환경에서 실험적인 패스 로스 모델에 관한 연구)

  • Kim, Kyung-Tae;Kim, Jin-Wook;Jo, Yun-Hyun;Kim, Sang-Uk;Yoon, In-Seop;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.516-523
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) with the terminal with two antlers. We measured two frequencies among VHF/UHF channel bands. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponents at passager terminal areas were 3.32 and 3.10 respectively in 128.2 MHz and 269.1 MHz. The deviation of prediction error is 9.69 and 9.65. The new path loss equation at the terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

An Evaluation Technique for the Path-following Control Performance of Autonomous Surface Ships (자율운항선박의 항로추정성능 평가기법 개발에 관한 연구)

  • Daejeong Kim;ChunKi Lee;Jeongbin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.10-17
    • /
    • 2023
  • A series of studies on the development of autonomous surface ships have been promoted in domestic and foreign countries. One of the main technologies for the development of autonomous ships is path-following control, which is closely related to securing the safety of ships at sea. In this regard, the path-following performance of an autonomous ship should be first evaluated at the design stage. The main aim of this study was to develop a visual and quantitative evaluation method for the path-following control performance of an autonomous ship at the design stage. This evaluation technique was developed using a computational fluid dynamics (CFD)-based path-following control model together with a line-of-sight (LOS) guidance algorithm. CFD software was utilized to visualize waves around the ship, performing path-following control for visual evaluation. In addition, a quantitative evaluation was carried out using the difference between the desired and estimated yaw angles, as well as the distance difference between the planned and estimated trajectories. The results demonstrated that the ship experienced large deviations from the planned path near the waypoints while changing its course. It was also found that the fluid phenomena around the ship could be easily identified by visualizing the flow generated by the ship. It is expected that the evaluation method proposed in this study will contribute to the visual and quantitative evaluation of the path-following performance of autonomous ships at the design stage.

Performance Evaluation of Convolution Coding OFDM Systems (컨볼루션 코딩 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.294-301
    • /
    • 2013
  • OFDM technique uses multiple sub-carriers for the data transmission. Therefore, bit error rate increases because of inter-carrier interference caused by nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over multi path fading channels is characterized by small transmission gain in multiple sub-carrier frequency interval. Therefore bit error rate increases because of burst errors. Inter-leaver and convolution error control coding are effective for the reduction of this burst error. Pilot symbol is used for the channel estimation in OFDM systems. However, imperfect channel estimates in this systems degrade the performance. The performance of this convolution coding OFDM systems using inter-leaver, gauged by the bit error rate, is analyzed considering the nonlinear high power amplifier, carrier frequency offset and channel estimation error.

The Analysis about Channel Code Performance of Underwater Channel (수중통신채널에서 고려되는 채널 부호의 성능 분석)

  • Bae, Jong-Tae;Kim, Min-Hyuk;Choi, Suk-Soon;Jung, Ji-Won;Chun, Seung-Yong;Dho, Kyeong-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.286-295
    • /
    • 2008
  • Underwater acoustic communication has multi path error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In this paper, we consider the use of various channel coding schemes such as RS code, convolutional code, cross-layer code and LDPC code in order to compensate the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error, so interleaver has little effect for error correcting. For correcting of error floor by multipath error, it is necessary strong channel codes like LDPC code that is similar to Shannon's limit. And the performance of concatenated codes including RS codes has better performance than using singular channel codes.

A Design of Adaptive Channel Estimate Algorithm for ICS Repeater (ICS 중계기를 위한 적응형 채널추정 알고리듬 설계)

  • Lee, Suk-Hui;Song, Ho-Sup;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.19-25
    • /
    • 2009
  • In this thesis, design effective elimination interference algorithm of ICS repeat system for repeater that improve frequency efficiency. Error convergence speed and accuracy of LMS Algorithm are influenced by reference signal. For improve LMS Algorithm, suggest Adaptive channel estimate algorithm. For using channel characteristic, adaptive channel estimate algorithm make reference signal similar interference signal by convolution operation and complement LMS algorithm demerit. For make channel similar piratical channel, apply Jake's Rayleigh multi-path model that random five path with 130Hz Doppler frequency. LMS algorithm and suggested adaptive channel estimate algorithm that have 16 taps apply to ICS repeat system under Rayleigh multi-path channel, so simulate with MATLAB. According to simulate, ICS repeat system with LMS algorithm show -40dB square error convergent after 150 datas iteration and ICS repeat system with adaptive channel estimate algorithm show -80dB square error convergent after 200 datas iteration. Analyze simulation result, suggested adaptive channel estimate algorithm show more three times iteration performance than LMS algorithm, and 40dB accuracy.

An Energy Balanced Multi-Hop Routing Mechanism considering Link Error Rate in Wireless Sensor Networks (무선 센서 네트워크의 링크 에러율을 고려한 에너지소모가 균등한 멀티 홉 라우팅 기법)

  • Lee, Hyun-Seok;Heo, Jeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2013
  • In wireless sensor networks, energy is the most important consideration because the lifetime of the sensor node is limited by battery. Most of the existing energy efficient routing protocols use the minimum energy path to minimize energy consumption, which causes an unbalanced distribution of residual energy among nodes. As a result, the power of nodes on energy efficient paths is quickly depletes resulting in inactive. To solve these problems, a method to equalize the energy consumption of the nodes has been proposed, but do not consider the link error rate in the wireless environment. In this paper, we propose a uniform energy consumption of cluster-based multi-hop routing mechanism considering the residual energy and the link error rate. This mechanism reduces energy consumption caused by unnecessary retransmissions and distributes traffic evenly over the network because considering the link error rate. The simulation results compared to other mechanisms, the proposed mechanism is energy-efficient by reducing the number of retransmissions and activation time of all nodes involved in the network has been extended by using the energy balanced path.

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF