• Title/Summary/Keyword: Path effectiveness

Search Result 541, Processing Time 0.026 seconds

Complete Coverage Path Planning for Multi-Robots (멀티로봇에 대한 전체영역 경로계획)

  • Nam, Sang-Hyun;Shin, Ik-Sang;Kim, Jae-Jun;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.73-80
    • /
    • 2009
  • This paper describes a path planning algorithm, which is the minimal turning path based on the shape and size of the cell to clean up the whole area with two cleaning robots. Our method divides the whole cleaning area with each cell by cellular decomposition, and then provides some path plans among of the robots to reduce the rate of energy consumption and cleaning time of it. In addition we suggest how to plan between the robots especially when they are cleaning in the same cell. Finally simulation results demonstrate the effectiveness of the algorithm in an unknown area with multiple robots. And then we compare the performance index of two algorithms such as total of turn, total of time.

Path Planning based on Geographical Features Information that considers Moving Possibility of Outdoor Autonomous Mobile Robot

  • Ibrahim, Zunaidi;Kato, Norihiko;Nomura, Yoshihiko;Matsui, Hirokazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.256-261
    • /
    • 2005
  • In this research, we propose a path-planning algorithm for an autonomous mobile robot using geographical information, under the condition that the robot moves in unknown environment. All image inputted by camera at every sampling time are analyzed and geographical elements are recognized, and the geographical information is embedded in environmental map. The geographical information was transformed into 1-dimensional evaluation value that expressed the difficulty of movement for the robot. The robot goes toward the goal searching for path that minimizes the evaluation value at every sampling time. Then, the path is updated by integrating the exploited information and the prediction on unexploited environment. We used a sensor fusion method for improving the mobile robot dead reckoning accuracy. The experiment results that confirm the effectiveness of the proposed algorithm on the robot's reaching the goal successfully using geographical information are presented.

  • PDF

A Study on the Tool Interference Detection and Tool Path Correction in Compound Surface Machining (복합곡면 가공시 공구간섭의 탐지와 공구경로 수정에 관한 연구)

  • 조명우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.105-112
    • /
    • 1999
  • In this paper we deal with tool interference problem in the case of compound surface machining. A new tool interference detection and correction method based on the envelope of the tool path is suggested to identify and correct the tool interference - not only within the local path of tool movement, but also outside of the tool path. Therefore, the developed strategy can be used to check the possible interference in any region of the surface. In order to analyze quantitatively the milled surface error produced by the tool interference, improved surface prediction model is also suggested in cutting process by general cutters. The effectiveness of the proposed method is demonstrated through simulation study.

  • PDF

Segment-Based Inverted Index for Querying Large XML Documents (대용량 XML 문서의 효율적인 질의 처리를 위한 세그먼트 기반 역 인덱스)

  • Jeong, Byeong-Soo;Lee, Hiye-Ja
    • Journal of Information Technology Services
    • /
    • v.7 no.3
    • /
    • pp.145-157
    • /
    • 2008
  • The existing XML storage methods which use relational data model, usually store path information for every node type including literal contents in order to keep the structural information of XML documents. Such path information is usually maintained by an inverted index to efficiently process XPath queries for large XML documents. In this study, We propose an improved approach that retrieve information from the large volume of XML documents stored in a relational database, while using a segment-based inverted index for path searches. Our new approach can reduce the number of searching an inverted index for getting target path information. We show the effectiveness of this approach through several experiments that compare XPath query performance with the existing methods.

The Real-time Path Planning Using Artificial Potential Field and Simulated Annealing for Mobile Robot (Artificial Potential Field 와 Simulated Annealing을 이용한 이동로봇의 실시간 경로계획)

  • 전재현;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.256-256
    • /
    • 2000
  • In this parer, we present a real-time path planning algorithm which is integrated the artificial potential field(APF) and simulated annealing(SA) methods for mobile robot. The APF method in path planning has gained popularity since 1990's. It doesn't need the modeling of the complex configuration space of robot, and is easy to apply the path planning with simple computation. However, there is a major problem with APF method. It is the formation of local minima that can trap the robot before reaching its goal. So, to provide local minima recovery, we apply the SA method. The effectiveness of the proposed algorithm is verified through simulation.

  • PDF

Path Planning of Mobile Robot using a Potential Field (퍼텐셜 필드를 이용한 이동 로봇의 경로 계획)

  • Jung Kyung-Kwon;Kang Seung-Ho;Chung Sung-Boo;Eom Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.701-705
    • /
    • 2006
  • This paper propose a method of mobile robot path planning for prevention of slip using potential field. The path planning minimizes robot slip for the potential field method to smooth a potential barrier. In order to verify the effectiveness of the proposed method, we performed simulations on path planning with C-obstacles in the workspace. The results show that the proposed method considerably improves on the performance of the general potential field method.

  • PDF

Obstacle-avoidance Algorithm using Reference Joint-Velocity for Redundant Robot Manipulator with Fruit-Harvesting Applications

  • Y.S. Ryuh;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.638-647
    • /
    • 1996
  • Robot manipulators for harvesting fruits must be controlled to track the desired path of end-effector to avoid obstacles under the consideration of collision free area and safety path. This paper presents a robot path control algorithm to secure a collision free area with the recognition of work environments. The flexible space, which does not damage fruits or branches of tree due to their flexibility and physical properties , extends the workspace. Now the task is to control robot path in the extended workspace with the consideration of collision avoidance and velocity limitation at the time of collision concurrently. The feasibility and effectiveness of the new algorithm for redundant manipulators were tested through simulations of a redundant manipulator for different joint velocities.

  • PDF

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

A Path & Velocity Profile Planning Based on A* Algorithm for Dynamic Environment (동적 환경을 위한 A* 알고리즘 기반의 경로 및 속도 프로파일 설계)

  • Kwon, Min-Hyeok;Kang, Yeon-Sik;Kim, Chang-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.405-411
    • /
    • 2011
  • This paper presents a hierarchical trajectory planning method which can handle a collision-free of the planned path in complex and dynamic environments. A PV (Path & Velocity profile) planning method minimizes a sharp change of orientation and waiting time to avoid a collision with moving obstacle through detour path. The path generation problem is solved by three steps. In the first step, a smooth global path is generated using $A^*$ algorithm. The second step sets up the velocity profile for the optimization problem considering the maximum velocity and acceleration. In the third step, the velocity profile for obtaining the shortest path is optimized using the fuzzy and genetic algorithm. To show the validity and effectiveness of the proposed method, realistic simulations are performed.

A Method to Determine the Weights for Mission Type based Global Path Planning (임무유형 기반 전역경로계획을 위한 가중치 결정방법)

  • Park, Won-Ik;Lee, Ho-Joo;Kim, Do-Jong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.711-717
    • /
    • 2014
  • Global path planning for autonomous driving of unmanned ground vehicle is essential. When setting global path planning, its accuracy and effectiveness is increased if useful information such as terrain type of driving route has been reflected on global path planning. As a method to reflect the terrain type, there is a method to perform global path planning by applying the weight to each terrain type. At this time, how to assign appropriate weights corresponding to the terrain type is more important than anything. In this paper, we proposed a method to determine the weight for terrain type that may affect the results of global path planning. Moreover, we presented effective operation method and design results(GUI) to check the possibility of the use of the proposed method.