최근 인터넷의 급속한 성장과 초고속 통신망의 구축으로 인하여 다양한 멀티미디어 서비스들이 제공되고 있다. 기존의 멀티미디어 서비스들은 클라이언트/서버 모델을 기반으로 구축되어 과부화로 인한 네트워크의 다운이나 다운로드 속도 저하 등의 문제점들이 발생하였다. 이를 해결하기 위해 P2P 네트워크의 개념이 등장하였으며 이 개념은 인터넷을 통해 급속히 확산되었다. 본 논문에서는 순수 P2P 환경으로 구축된 멀티미디어 서비스 환경에서의 자원 검색 기법을 제안한다. 제안 기법에서는 각 호스트에게 자신이 보유하고 있는 자원의 복제본에 대한 위치 정보와 다른 호스트로부터 최근 요청을 받은 자원에 대한 위치 정보를 유지하게 하여 기존 순수 P2P 환경에서의 검색 기법보다 빠른 검색 속도를 제공하며 적은 트래픽량을 발생시키는 장점을 가진다. 또한 제안 기법은 자원의 위치 정보를 분산하며 검색 결과의 반환 경로를 검색 요청 시의 경로와 다르게 하여 기존의 순수 P2P 환경에서의 검색 기법에서 네트워크가 불안정할 때 검색 결과가 유실되는 문제점을 해결한다.
상황인식 서비스에서 위치설정은 매우 중요한 기술 요소이다. RSSI와 같은 전파특성 지수가 편리하고 저렴한 이유로 널리 사용되고 있다. 그러나 RSSI는 시간에 따른 변화가 크고 다중경로에 취약성으로 실내 환경에서 위치 설정에 적절하지 않다. 본 논문은 WLAN의 RF 전파특성 지수인 CSI(Channel State Information)를 이용하여 실내에서 임의 단말의 위치설정을 위한 거리추정에 소요되는 절차와 기법들을 제시한다. 먼저 거리추정의 포괄적인 절차를 정의하고, 거리대비 전파손실 모델의 환경 특성값을 보정하는 알고리즘을 제시한다. 상용 WLAN 통신모듈을 이용한 실험을 통하여 제안된 절차와 기법의 유용성에 대해서 분석한다.
이동로봇의 위치인식과 이를 바탕으로 하는 주행시스템은 이동로봇 핵심기술 중의 하나이다. 무선 센서 네트워크는 저전력, 저가, 단순성 등이 주된 특징으로서 실내 위치인식 시스템의 응용에 있어서 많은 가능성을 지니고 있다. 본 논문에서는 ZigBee 기반 무선 센서 네트워크에 퍼지 모델링 방법을 사용하여 이동로봇의 실내 위치인식 알고리즘을 구현하여 이를 주행시스템에 적용하고자 한다. ZigBee 기반 센서 네트워크에서는 노드들 간의 거리를 인식하기 위해서 RSSI (Received Signal Strength Indication) 값을 이용하게 된다. 그러나 이 RSSI 값은 건물 주위 물체에 의해 왜곡되거나 반사되는 수신 신호의 특성에 의해 영향을 받게 된다. 따라서 정확한 거리 정보를 알아내기 위해서는 적절한 교정 방법이 필요하며, RSSI 값에 퍼지 모델링 기법을 이용하여 정확한 거리 정보를 추출하고자 한다. 또한 이 거리 정보를 바탕으로 동적 삼각측량법을 이용하여 이동로봇의 실내 위치를 효율적으로 인식하고 주변 상항 변화에 효과적으로 대처할 수 있는 주행 알고리즘을 개발하고자 한다.
본 논문은 다중 셀 OFDMA(Orthogonal Frequency Division Multiple Access) 시스템에서 외곽 지역 사용자들의 QoS(Quality of Service)를 보장하기 위해 두 단계로 이루어진 자원 할당 알고리즘을 제안한다. 다중 셀 환경에서 셀 외곽 지역에 위치한 사용자들은 인접 셀에서 발생하는 동일 채널 간섭에 의한 수신 SINR(Signal to Interference and Noise Ratio)의 열화가 셀 내부 지역의 사용자들에 비해 심각하다. 제안하는 기법은 인접한 셀들의 외곽 사용자들 간 배타적 부반송파 할당과 전력 재할당을 통해 동일 채널 간섭을 억제한다. 모의실험 결과 외곽 지역의 데이터 전송률을 600Kbps이상 향상시킴으로써 지역 간 불균형한 서비스 제공 현상을 완화시켜 사용자수와 사용자의 셀 내 위치에 대해 안정적인 데이터 전송률을 지원하였다.
IEEE 802.16j는 기존의 IEEE 802.16e에 중계기를 도입하여 커버리지 확장과 데이터 처리율 향상을 목적으로 하고 있다. 일반적인 셀룰러 시스템과 마찬가지로 IEEE 802.16j 또한 셀 가장자리에서 경로손실(Path loss), 음영감쇄(Shadow Fading)와 다중경로 감쇄(Multipath fading)에 의해 성능 열화를 겪게 된다. 한편, IEEE 802.16j시스템에서 두 개 이상의 중계기를 상호 협조적으로 사용함으로써 공간 다이버시티 이득을 얻을 수 있다. 여기에, 공간 시간 부호를 사용하는 상호 협조 중계 방식은 일반적인 단일 중계기를 사용하는 방식보다 Multipath Fading 환경에서 보다 우수한 성능을 제공하며, Shadow Fading에 대해서 링크간의 통신 신뢰도를 높인다. 이 논문에서는 상호 협조 중계 방식을 사용하는 IEEE 802.16j의 성능을 링크 레벨 모의 실험을 통해 구하고, 그 방식이 기존의 단일 중계 방식보다 우수한 성능을 가짐을 보인다. 또한 서로 다른 경로들마다 각각의 Shadow Fading을 겪으므로, 이 점을 고려한 실제적인 Shadow Fading 모델을 적용하고 분석하여, 중계기의 공간적인 위치가 시스템의 성능에 큰 영향을 준다는 것을 밝힌다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3834-3857
/
2021
The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.
본 연구에서는 PSC 구조물의 프리스트레스를 직접적으로 평가하기 위해 헤테로코어 광섬유를 활용하여 콘크리트의 변형량 계측을 기반으로 하는 새로운 센서모듈을 제안하고 성능실험을 수행하였다. 헤테로코어 광섬유는 전송로의 특정 부분이 구부러지면 광 손실이 발생하며, 곡률의 크기에 따라 광 손실량이 선형적으로 변한다. 센서모듈의 계측 성능과 광섬유의 적용성을 확인하기 위해 센서모듈에 변형을 발생시키며 광섬유를 통과하는 빛을 전력으로 변환하여 측정하였다. 센서모듈을 매립시킨 지름 15cm, 높이 35cm의 원주형 콘크리트 공시체에 최대 변형량 0.5mm을 0.12mm/min의 속도로 발생시키는 동안 광섬유를 통과한 빛은 변형과의 관계에서 0.9333의 선형성을 가지는 것을 확인할 수 있었다. 이번 실험의 결과를 통해 헤테로코어형 광섬유를 활용한 센서모듈을 구조물에 매립하여 콘크리트 압축변형량 계측을 통해 PSC 구조물의 프리스트레스를 직접적으로 평가하는 것이 가능할 것으로 판단되며, 앞으로 진행될 PSC 부분 거더 모델 실험에 적용할 쉬스관 일체형 센서모듈 개발에 유용한 자료로 활용될 수 있을 것으로 판단된다.
4차 산업혁명시대에 반지하 실내 복도 환경에서 새로운 전파 수요를 발굴하기 위해 본 논문에서는 주파수 6, 10, 17 GHz의 전파 특성에 대한 측정 및 분석하였다. 측정한 실내 내부 환경은 3면의 강의실과 외면의 유리창으로 구성되어있는 일자형 복도이다. 본 연구는 이러한 환경에 맞게 측정 시나리오 개발과 측정 시스템을 구성하였다. 송신 안테나는 고정하고 수신 안테나 위치의 거리에 따라 가시선 환경에서 주파수 영역과 시간영역 전파 특성을 측정하여 분석 하였다. 주파수 영역은 FI(: Floating intercept) 경로 손실 모델의 매개변수와 R-squared 값의 0.5 이상에 대한 신뢰도를 얻었다. 또한, 시간 영역은 RMS(: Root mean square) 지연 확산과 K-factor의 누적 확률에서 6 GHz는 전파 전달도가 높고, 17 GHz는 전파 전달도가 낮은 결과를 얻었다. 이러한 연구 결과는 반지하 실내 복도 환경에서 WIFI 6 이상이나 5G 이상에 대해 초 연결과 초 지연 인공지능 서비스를 제공하는데 효과가 있을 것이다.
건설프로젝트에서는 다양한 참여자들이 제한된 공간에서 각자의 작업공간을 차지하며 작업을 수행한다. 작업공간에 대한 부적절한 계획은 건설프로젝트의 생산성 감소, 작업 위험 증가 및 품질 저하 등의 문제로 이어지기 때문에 작업공간은 건설프로젝트에서 고려하여야 할 중요한 요소 중 하나이다. 그러나 기존의 건설프로젝트 공사 계획 수립을 위한 방법들은 건설프로젝트에서의 작업공간을 고려하지 못하는 한계가 있었다. 따라서 본 연구에서는 체계적이지 못한 작업공간 계획으로 인하여 발생하는 작업공간 간섭 문제를 예방하기 위하여 4D BIM(Building Information Model) 기반의 작업공간 계획 프로세스를 제안한다. 제안된 프로세스는 각 작업공간의 특성과 공사수행계획을 반영하여 각 액티비티의 작업공간 점유상태를 표현하고 이를 바탕으로 발생 가능한 작업공간 간섭을 발견한다. 또한 각 액티비티와 작업공간의 특성 그리고 공사수행계획 등을 고려하여 발견된 작업공간 간섭에 대한 해결책을 도출한다. 본 연구의 결과를 바탕으로, 프로젝트 관리자는 본 공사 수행 이전에 공사에 필요한 작업공간을 미리 계획함으로써 서로 다른 액티비티 작업공간 사이의 간섭을 예방하고 건설프로젝트에서의 불필요한 손실을 예방할 수 있다.
An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.