• Title/Summary/Keyword: Path Based Assignment

Search Result 75, Processing Time 0.026 seconds

Developing algorithms for providing evacuation and detour route guidance under emergency conditions (재난.재해 시 대피 및 우회차량 경로 제공 알고리즘 개발)

  • Yang, Choong-Heon;Son, Young-Tae;Yang, In-Chul;Kim, Hyun-Myoung
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2009
  • The transportation network is a critical infrastructure in the event of natural and human caused disasters such as rainfall, snowfall, and terror and so on. Particularly, the transportation network in an urban area where a large number of population live is subject to be negatively affected from such events. Therefore, efficient traffic operation plans are required to assist rapid evacuation and effective detour of vehicles on the network as soon as possible. Recently, ubiquitous communication and sensor network technology is very useful to improve data collection and connection related emergency information. In this study, we develop a specific algorithm to provide evacuation route and detour information only for vehicles under emergency situations. Our algorithm is based on shortest path search technique and dynamic traffic assignment. We perform the case study to evaluate model performance applying hypothetical scenarios involved terror. Results show that the model successfully describe effective path for each vehicle under emergency situation.

  • PDF

Development of Dynamic Passenger-Trip Assignment Model of Urban Railway Using Seoul-Incheon-Gyeonggi's Transportation Card (대중교통카드기반 수도권 도시철도 통행수요배정모형)

  • Sohn, Jhieon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.105-114
    • /
    • 2016
  • With approximately 20 million transportation card data entries of the metropolitan districts being generated per day, application of the data to management and policy interventions is becoming an issue of interest. The research herein attempts a model of the possibility of dynamic demand change predictions and its purpose is thereby to construct a Dynamic Passengers Trip Assignment Model. The model and algorithm created are targeted at city rail lines operated by seven different transport facilities with the exclusion of travel by bus, as passenger movements by this mode can be minutely disaggregated through card tagging. The model created has been constructed in continuous time as is fitting to the big data characteristic of transport card data, while passenger path choice behavior is effectively represented using a perception parameter as a function of increasing number of transfers. Running the model on 800 pairs of metropolitan city rail data has proven its capability in determining dynamic demand at any moment in time, in line with the typical advantages expected of a continuous time-based model. Comparison against data measured by the eye of existing rail operating facilities to assess changes in congestion intensity shows that the model closely approximates the values and trends of the existing data with high levels of confidence. Future research efforts should be directed toward continued examination into construction of an integrated bus-city rail system model.

Development a scheduling model for AGV dispatching of automated container terminals (자동화 컨테이너 터미널의 AGV 배차 스케줄링 모형 개발)

  • Jae-Yeong Shin;Ji-Yong Kwon;Su-Bin Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The automation of container terminals is an important factor that determines port competitiveness, and global advanced ports tend to strengthen their competitiveness through container terminal automation. The operational efficiency of the AGV, which is an essential transport equipment of the automated terminal, can improve the productivity of the automated terminal. The operation of AGVs in automated container terminals differs from that of conventional container terminals, as it is based on an automated system in which AGVs travel along designated paths and operate according to assigned tasks, requiring consideration of factors such as workload, congestion, and collisions. To prevent such problems and improve the efficiency of AGV operations, a more sophisticated model is necessary. Thus, this paper proposes an AGV scheduling model that takes into account the AGV travel path and task assignment within the terminal The model prevent the problem of deadlock and. various cases are generated by changing AGV algebra and number of tasks to create AGV driving situations and evaluate the proposed algorithm through algorithm and optimization analysis.

  • PDF

A hybrid tabu search algorithm for Task Allocation in Mobile Crowd-sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.102-108
    • /
    • 2020
  • One of the key features of a mobile crowd-sensing (MCS) system is task allocation, which aims to recruit workers efficiently to carry out the tasks. Due to various constraints of the tasks (such as specific sensor requirement and a probabilistic guarantee of task completion) and workers heterogeneity, the task allocation become challenging. This assignment problem becomes more intractable because of the deadline of the tasks and a lot of possible task completion order or moving path of workers since a worker may perform multiple tasks and need to physically visit the tasks venues to complete the tasks. Therefore, in this paper, a hybrid search algorithm for task allocation called HST is proposed to address the problem, which employ a traveling salesman problem heuristic to find the task completion order. HST is developed based on the tabu search algorithm and exploits the premature convergence avoiding concepts from the genetic algorithm and simulated annealing. The experimental results verify that our proposed scheme outperforms the existing methods while satisfying given constraints.

A Study on the Design and Implementation of System for Predicting Attack Target Based on Attack Graph (공격 그래프 기반의 공격 대상 예측 시스템 설계 및 구현에 대한 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.79-92
    • /
    • 2020
  • As the number of systems increases and the network size increases, automated attack prediction systems are urgently needed to respond to cyber attacks. In this study, we developed four types of information gathering sensors for collecting asset and vulnerability information, and developed technology to automatically generate attack graphs and predict attack targets. To improve performance, the attack graph generation method is divided into the reachability calculation process and the vulnerability assignment process. It always keeps up to date by starting calculations whenever asset and vulnerability information changes. In order to improve the accuracy of the attack target prediction, the degree of asset risk and the degree of asset reference are reflected. We refer to CVSS(Common Vulnerability Scoring System) for asset risk, and Google's PageRank algorithm for asset reference. The results of attack target prediction is displayed on the web screen and CyCOP(Cyber Common Operation Picture) to help both analysts and decision makers.

Analysis of the effect in the city due to the bridges incidents in Songdo International City (송도국제도시 연결도로의 유고상황 발생에 따른 신도시 내부 영향 분석)

  • Hong, Ki-Man;Kim, Tea-gyun
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • The purpose of this study is to analysis the impact on the inside of the new city when an incidents occurs on the Songdo International City connecting road, which has a limited access. The analysis data used KTDB's O/D and network data of the Seoul metropolitan area. In addition, the scenario composition applied a method of reducing the number of lanes on the road according to the situation of incidents, targeting bridges advancing from Songdo International City to the outside in the morning peak hours. The analysis method analyzed the traffic volume, total travel time, total travel kilometer, and route change in the new city based on the results of the traffic allocation model. As a result of the analysis, the range of influence was shown to two types. First, of the seven bridges, Aam 3, Aam 2, and Aam 1 were analyzed to have an impact only in some areas of the northwestern part of the new city. On the other hand, the remaining bridges were analyzed to affect the new city as a whole. The analysis results of this study are expected to be used as basic data to establish the scope of internal road network management when similar cases occur in the future.

A Minimum Wavelength Assignment Technique for Wavelength-routed Optical Network-on-Chip (파장 라우팅 광학 네트워크-온-칩에서의 최소 개수 파장 할당 기법)

  • Kim, Youngseok;Lee, Jae Hun;Cui, Di;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.82-90
    • /
    • 2013
  • An Optical Network-on-Chip(ONoC) based on silicon photonics is one of promising technology for next generation exascale computing architectures. Recent active researches on ONoC focus on improving bandwidth further and avoiding path collisions by using wavelength division multiplexing (WDM). However, the number of wavelengths used for the WDM increases linearly as the number of Processing Element (PE) increases in existing ONoCs which adopt centralized routing architecture. The problem will also arises growing cost of optical devices such as light switches and light sources and limits the scalability of ONoC due to the sinal loss caused by interference of distinct light sources. In this paper, we proposes a distributed routing architecture for ONoC which is based on 2D-mesh structure using WDM technique and present a method that minimize the required number of wavelengths exploiting the connectivity of communication. In comparison with existing centralized routing architectures, results show reduction by 56% of the number of wavelengths and 21% of the number of optical switches in $8{\times}8$ networks.

A Study of Efficient Spare Capacity Planning Scheme in Mesh-Based Survivable Fiber-Optic Networks (생존성을 갖는 메쉬기반 광전송망에서의 효율적인 예비용량 설계방안에 관한 연구)

  • Bang, Hyung-Bin;Kim, Byung-Gi
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.635-640
    • /
    • 2003
  • Due to the development of information technology and widespread use of telecommunications networks, the design of mesh-survivable net works has received considerable attention in recent years. This paper deals with spare capacity planning scheme in mesh-based fiber-optic networks. In this study, a new spare capacity planning scheme is proposed utilizing path restoration with maximal sharing of share capacity that is traced by the spare capacity incremental factor (after this, we called "SCIF"). We compare it with three other spare capacity planning scheme : link capacity of IP (Integer Programming), SLPA(Spare Link Placement Algorithm) and GA(Genetic Algorithm). The approach shows better performance with heuristics algorithm for determining the spare capacity assignment and the computational time is easily controlled allowing the approach to scale to large networks. The major advantages of the new approach are reduction of spare capacity and a polynomial time complexity.omplexity.

A Revenue Allocation Model for the Integrated Urban Rail System in the Seoul Metropolitan (수도권 도시철도 수입금 정산 분석모형)

  • Shin, Seong-Il;Noh, Hyun-Soo;Cho, Chong-Suk
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.157-167
    • /
    • 2005
  • Seoul metropolitan public transport reform results in the introduction of the semi-public operation and distance-based fare policies. With implementation of these policies, public transport revenue allocation has been (will be) evolved very complicated because the existing revenue allocation issues have not only been clearly solved, which is generated by the combined relationship among Korea Railroad Corporation (KRC). Seoul Metropolitan Subway Corporation (SMSC). Seoul Metropolitan Rapid Transit Corporation (SMRTC), and Incheon Rapid Transit Corporation (IRTC), but also the revenue allocation problem between bus and urban railroad-related organizations need to be considered in this combined framework. On top of that. based on the future plans such as the private sector's railroad construction plan(s), the light rail transit construction plans of several local governments and the join of remained bus lines of Seoul metropolitan areas, it is understood that the revenue allocation among public transport operating organization will become one of main issues of operation organization as well as local and central governments. As a basic approach for revenue allocation of public transport operation organizations, the purpose of this paper is to propose an integrated model applicable to estimate degree of service contribution in passenger carriage in the combined public transport network. With a hypothesis that the complete electronic card system is deployed, this paper supposes every passenger's loading and alighting stations is recordable. Thereby, this paper limits research scope as to Seoul metropolitan railroad area since used route(s) between origin and destination stations can not be traceded because transfer stations each passenger path through is not recorded. Each model proposed in the paper is as follows: 1. a generalized cost reflecting passenger's transfer behavior; 2.a K path model for determining similar routes between O-D; 3.an assignment model for loading O-D trips onto the detected similar routes using Logit Model.

Comparative Study on Various Ductile Fracture Models for Marine Structural Steel EH36

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • It is important to obtain reasonable predictions of the extent of the damage during maritime accidents such as ship collisions and groundings. Many fracture models based on different mechanical backgrounds have been proposed and can be used to estimate the extent of damage involving ductile fracture. The goal of this study was to compare the damage extents provided by some selected fracture models. Instead of performing a new series of material constant calibration tests, the fracture test results for the ship building steel EH36 obtained by Park et al. (2019) were used which included specimens with different geometries such as central hole, pure shear, and notched tensile specimens. The test results were compared with seven ductile fracture surfaces: Johnson-Cook, Cockcroft-Latham-Oh, Bai-Wierzbicki, Modified Mohr-Coulomb, Lou-Huh, Maximum shear stress, and Hosford-Coulomb. The linear damage accumulation law was applied to consider the effect of the loading path on each fracture surface. The Swift-Voce combined constitutive model was used to accurately define the flow stress in a large strain region. The reliability of these simulations was verified by the good agreement between the axial tension force elongation relations captured from the tests and simulations without fracture assignment. The material constants corresponding to each fracture surface were calibrated using an optimization technique with the minimized object function of the residual sum of errors between the simulated and predicted stress triaxiality and load angle parameter values to fracture initiation. The reliabilities of the calibrated material constants of B-W, MMC, L-H, and HC were the best, whereas there was a high residual sum of errors in the case of the MMS, C-L-O, and J-C models. The most accurate fracture predictions for the fracture specimens were made by the B-W, MMC, L-H, and HC models.