Purpose: The purpose of this study is to introduce the improving attorney system. It was confirmed by document writing that the staff in the field in Korea had the most difficulty in the Quality circle activities. The reform improving attorney is a quality expert at the Quality Secretariat and assists them in their documentation. Methods: Just as a patent attorney helps to get a patent, an improving attorney system helps document the improvement results of the field Quality circle and even standardizes the company. The process of introducing an improving attorney includes the declaration of an improving attorney are 11 levels of work. Results: An improving attorney was conducted in 600 organizations for 18 months. As a result of the comparison of the number of cases before and after the introduction of the improving attorney, the number of solution problem was lowered to 9 before 2016 and 8 in 2017, but after the introduction, it increased exponentially to 181 in 2018 and 162 in August 2019. In 2016 and 2017, only one standard was registered, but 64 standards were registered in 2018 and 71 in 2019. Conclusion: In this case, the improving attorney system was found to be helpful in activating the Quality circle. It is expected to revitalize Korea's Quality circle by spreading the improving attorney system to many companies.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.277-280
/
2019
본 논문에서는 화학분야 특허 문서에 존재하는 도표(TABLE) 데이터를 인공지능 기술을 활용하여 자동으로 추출하고 정형화된 형태로 가공하는 방법을 제안한다. 특허 문서에서 도표 데이터는 실시예에서 실험결과나 비교결과를 간결하고 가시적으로 표현하기 위하여 주로 사용되나, 셀의 속성을 정의하는 헤더부분과 수치가 표현되는 값 부분의 경계가 모호하여 구조화하는데 어려움이 있다. 본 논문에서 제안하는 방법은 소량의 학습데이터를 구축하고 기계학습을 통해 도표에 존재하는 셀의 속성을 예측하고, 예측된 속성을 토대로 조성과 물성 정보를 자동으로 구분하여 추출하는 방법을 제시한다. 제시된 방법을 활용하여 화학 분야 조성물 특허의 도표데이터에 시뮬레이션 결과 각 항목별 98.17%의 속성 예측 정확도를 나타내었으며 기존 규칙기반 연구보다 작업난이도, 예측정확도에서 우수한 성과를 보인다.
This Study focused on IPC (International Patent Classification) for TKM (Traditional Korea Medicine) Paper. The results processed for 9,000 TKM paper by using 8th in IPC Classification. The name of Herbal Medicine assigned to IPC Classification, we assigned to two part for main-Classification(A61K) and sub-Classification (A61P). The results obtained about 77% for A61K and about 96% for A61K36 among them. And also analysed about 23% for sub-Classification(A61P) additionally. Main-Classification is distributed A61K > A61H37 > A61B5 > A61N > A61M1. Detailed Main-Classification for A61K is distributed A61K36 > A61K35 > A61K33 among Main-Classification. TKM Paper mainly analysed A61K36 and A61H37 in Main-Classification. According to the results. 'The Korean Journal of Herbology' has high-valued for Utilization as a Non Patent Document. we should constructed Database system for protection of intellectual property rights. And after We will registered minimum documentation of PCT.
KIPS Transactions on Software and Data Engineering
/
v.9
no.4
/
pp.145-152
/
2020
MRC (Machine reading comprehension) is the AI NLP task that predict the answer for user's query by understanding of the relevant document and which can be used in automated consult services such as chatbots. Recently, the BERT (Pre-training of Deep Bidirectional Transformers for Language Understanding) model, which shows high performance in various fields of natural language processing, have two phases. First phase is Pre-training the big data of each domain. And second phase is fine-tuning the model for solving each NLP tasks as a prediction. In this paper, we have made the Patent MRC dataset and shown that how to build the patent consultation training data for MRC task. And we propose the method to improve the performance of the MRC task using the Pre-trained Patent-BERT model by the patent consultation corpus and the language processing algorithm suitable for the machine learning of the patent counseling data. As a result of experiment, we show that the performance of the method proposed in this paper is improved to answer the patent counseling query.
Journal of The Korean Digital Architecture Interior Association
/
v.12
no.1
/
pp.81-88
/
2012
According to the survey results of the Ministry of Land, Transport and Maritime Affairs in the end of December 2011, the residential buildings was reported as 67.3% of 4,529,464 buildings. Reflected in the national energy policy, the residential building is expected that greater energy savings. To have realized the Passive House Project used the Autoclaved Lightweight Concrete(ALC) material on exterior wall, we take advantage of a very large energy savings. Therefore, this study investigate the patent documents of three major companies, SUMITOMO, CLION, ASAHI KASEI, in Japan. and analyze technical flow and benchmarking patent. As a result, the Sliding method or the Rocking method of ALC panels how to install is to be superior to high-performance drift and safety by a earthquake. And the embedded anchor in panel needs to improve the shape and the strength of bearing. Thus installation technology of the ALC exterior wall investigated in japanese patent documents is expected to the fastening units and anchors.
Purpose - This paper's aim is to analyze the technological information in patent databanks as a strategy in prospecting for new technologies. Research design, data, and methodology - We detail the major free electronic database sources for patent information, the patent documents, the patent document structures, INID codes (Internationally Agreed Numbers for the Identification of Data), indexation, references, and classification notions. Additionally, we review and analyze information on the activities of the Center of Dissemination Documentation and Technological Information (CEDIN) from the National Institute of Intellectual Property (INPI) of Brazil for the period 2000 to 2011. Results - The research shows that the technological information contained in the patents could provide a wide range of functionality within companies and universities. Conclusions - In recent years, (CEDIN), a specialist in intellectual property, has been serving internal and external users by providing guidance on the basis of patents and other literature, but the number of users served is still small. In order to familiarize more potential users of such technological information, task forces should be created among INPI, universities, and companies.
Kim, Hyun Woo;Kim, Jongchan;Lee, Joonhyuck;Park, Sangsung;Jang, Dongsik
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.4
/
pp.392-397
/
2015
Society has been developed through analogue, digital, and smart era. Every technology is going through consistent changes and rapid developments. In this competitive society, R&D strategy establishment is significantly useful and helpful for improving technology competitiveness. A patent document includes technical and legal rights information such as title, abstract, description, claim, and patent classification code. From the patent document, a lot of people can understand and collect legal and technical information. This unique feature of patent can be quantitatively applied for technology analysis. This research paper proposes a methodology for extracting core technology and patents based on quantitative methods. Statistical analysis and social network analysis are applied to IPC codes in order to extract core technologies with active R&D and high centralities. Then, core patents are also extracted by analyzing citation and family information.
Journal of the Korean Society for information Management
/
v.39
no.1
/
pp.1-15
/
2022
This study analyzes the relationship of citations appearing in the patent data to understand knowledge transfers and impacts between patent documents in the field of pharmaceutical research. Patent data were collected from a website, Google Patents. The top 25 assignees were selected by searching for patent documents related to pharmaceutical research. We identify the citation relationships between assignees, then calculate and compare the values of h-index and derived indicators by using the number of citations and rank for each document of each assignee. As a result, in the case of pharmaceutical research, the assignee, such as 'Pfizer, MIT, and Abbott' shows a high impact. Among the five bibliometric indicators, the g-index and hS-index show similar results, and the indicators are the most related to the rankings of Total Citation Frequency, Cites per Patents, and Maximum Citation Frequency. In addition, it is highly related to the five indicators in the order of Total Citation Frequency, Cites per Patents, and Maximum Citation Frequency. In some cases, it is difficult to make an accurate comparison with Cites per Patents alone, which is previously known to indicate the technological influence of patent assignees.
Choe, Do Han;Kim, Gab Jo;Park, Sang Sung;Jang, Dong Sik
Journal of Korea Society of Digital Industry and Information Management
/
v.9
no.2
/
pp.139-149
/
2013
As the importance of technology forecasting while countries and companies manage the R&D project is growing bigger, the methodology of technology forecasting has been diversified. One of the forecasting method is patent analysis. This research proposes quick forecasting process of emerging technology based on keyword approach using text mining. The forecasting process is following: First, the term-document matrix is extracted from patent documents by using text mining. Second, emerging technology keyword are extracted by analyzing the importance of word from utilizing mean values and standard deviation values of the term and the emerging trend of word discovered from time series information of the term. Next, association between terms is measured by using cosine similarity. finally, the keyword of emerging technology is selected in consequence of the synthesized result and we forecast the emerging technology according to the results. The technology forecasting process described in this paper can be applied to developing computerized technology forecasting system integrated with various results of other patent analysis for decision maker of company and country.
Recently, with the advent of knowledge based society where information and knowledge make values, patents which are the representative form of intellectual property have become important, and the number of the patents follows growing trends. Thus, it needs to classify the patents depending on the technological topic of the invention appropriately in order to use a vast amount of the patent information effectively. IPC (International Patent Classification) is widely used for this situation. Researches about IPC automatic classification have been studied using data mining and machine learning algorithms to improve current IPC classification task which categorizes patent documents by hand. However, most of the previous researches have focused on applying various existing machine learning methods to the patent documents rather than considering on the characteristics of the data or the structure of patent documents. In this paper, therefore, we propose to use two structural fields, technical field and background, considered as having impacts on the patent classification, where the two field are selected by applying of the characteristics of patent documents and the role of the structural fields. We also construct multi-label classification model to reflect what a patent document could have multiple IPCs. Furthermore, we propose a method to classify patent documents at the IPC subclass level comprised of 630 categories so that we investigate the possibility of applying the IPC multi-label classification model into the real field. The effect of structural fields of patent documents are examined using 564,793 registered patents in Korea, and 87.2% precision is obtained in the case of using title, abstract, claims, technical field and background. From this sequence, we verify that the technical field and background have an important role in improving the precision of IPC multi-label classification in IPC subclass level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.