• Title/Summary/Keyword: Patch-clamp technique

Search Result 155, Processing Time 0.022 seconds

Modulation of Calcium Current by Cyclic GMP in the Single Ventricular Myocytes of the Rabbit (토끼 단일 심실근 세포에서 cyclic GMP의 $Ca^{2+}$ 전류 조절기전에 관한 연구)

  • An, Jae-Ho;Seo, Gyeong-Pil;Eom, Yung-Ui
    • Journal of Chest Surgery
    • /
    • v.25 no.4
    • /
    • pp.364-382
    • /
    • 1992
  • In order to investigate the effect of intracellular cyclic GMP on the calcium channel, whole cell patch clamp technique with internal perfusion method was used in the single ventricular myocytes of the rabbit. Cyclic GMP, cGMP analogues, cAMP, isopernaline and forskolin were perfused into cells and their effects on the calcium current were analysed by applying depolarizing step pulse of 10 mV in amplitude for 200 msec from holding potential of -40 mV. Calcium currents usually activated from -30 mV and then reached a peak at +10 mV. Amplitude of the calcium current was standardized with membrane capacitance, 50 pF. Peak amplitude at +10 mV in control was -0.15 nA/50pF. When 100 mM cAMP was applied from the pipette, peak amplitude of calcium current increased to -0.32 nA and addition of 1 mM isoprenaline further increased its amplitude. In the presence of cGMP it alone also produced an increase of the calcium current to -0.52 nA/50pF and addition of isoprenaline or forskolin increased its magnitude to -[0.55~0.95] nA/50pF. Simultaneous application of cGMP and cAMP increased the calcium current to -0.67 nA/50pF. Among the cGMP analogues, 8-Br-cGMP was the most potent stimulant for the calcium current activation. From the above results it could be concluded tlat cGMP increases the calcium current not through cAMP dependent protein kinase nor cAMP dependent phosphodiesterase pathway, but through independent phosphorylation pathway, possibly cGMP dependent protein kinase pathway.

  • PDF

The Effect of Papaverine on the Calcium-dependent $K^+$ Current in Rat Basilar Smooth Muscle Cells

  • Bai, Guang-Yi;Cho, Jae-Woo;Han, Dong-Han;Yang, Tae-Ki;Gwak, Yong-Geun;Kim, Chul-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.5
    • /
    • pp.375-379
    • /
    • 2005
  • Objective : Papaverine has been used in treating vasospasm following subarachnoid hemorrhage[SAH]. However, its action mechanism for cerebral vascular relaxation is not clear. Potassium channels are closely related to the contraction and relaxation of cerebral smooth muscle. Therefore, to identify the role of potassium and calcium channels in papaverine-induced vascular relaxation, we examine the effect of papaverine on potassium channels in freshly isolated smooth muscle cells from rat basilar artery. Methods : The isolation of rat basilar smooth muscle cells was performed by special techniques. The whole cell currents were recorded by whole cell patch clamp technique in freshly isolated smooth muscle cells from rat basilar artery. Papaverine was added to the bath solution. Results : Papaverine of $100{\mu}M$ into bath solution increased the amplitude of the outward $K^+$ current which was completely blocked by BKCa[large conductance calcium dependent potassium channels]blocker, IBX[iberiotoxin], and calcium chealator, BAPTA[l,2-bis[o-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid], in whole cell mode. Conclusion : These results strongly suggest that potassium channels may play roles in papaverine-induced vascular relaxation in rat basilar artery.

Contractile and Electrical Responses of Guinea-pig Gastric Smooth Muscle to Bradykinin

  • Kim, Chul-Soo;Jun, Jae-Yeoul;Kim, Sung-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.233-241
    • /
    • 1995
  • The nonapeptide bradykinin has been shown to exhibit an array of biological activities including relaxation/contraction of various smooth muscles. In order to investigate the effects of bradykinin on the contractility and the electrical activity of antral circular muscle of guinea-pig stomach, the isometric contraction and membrane potential were recorded. Also, using standard patch clamp technique, the $Ca^{2+}-activated$ K currents were recorded to observe the change in cytosolic $Ca^{2+}$ concentration. $0.4 {\mu}M$ bradykinin induced a triphasic contractile response (transient contraction-transient relaxation-sustained contraction) and this response was unaffected by pretreatment with neural blockers (tetrodotoxin, atropine and guanethidine) or with apamin. Bradykinin induced hyperpolarization of resting membrane potential and enhanced the amplitude of slow waves and spike potentials. The enhancement of spike potentials was blocked by neural blockers. Both the bradykinin-induced contractions and changes in membrane potential were reversed by the selective $B_2$-receptor antagonist $(N{\alpha}-adamantaneacetyl-_{D}-Arg-[Hyp, Thy,_{D}-Phe]-bradykinin)$. In whole-cell patch clamp experiment, we held the membrane potential at -20 mV and spontaneous and transient changes of Ca-activated K currents were recorded. Bradykinin induced a large transient outward current, consistent with a calcium-releasing action of bradykinin front the intracellular calcium pool, because such change was blocked by pretreatment with caffeine. Bradykinin-induced contraction was also blocked by pretreatment with caffeine. From these results, it is suggested that bradykinin induces a calciumrelease and contraction through the $B_{2}$ receptor of guinea-pig gastric smooth muscle. Enhancement of slow wave activity is an indirect action of bradykinin through enteric nerve cells embedded in muscle strip.

  • PDF

Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene $K^+$ Channels

  • Yun, Jihyun;Bae, Hyemi;Choi, Sun Eun;Kim, Jung-Ha;Choi, Young Wook;Lim, Inja;Lee, Chung Soo;Lee, Min Won;Ko, Jae-Hong;Seo, Seong Jun;Bang, Hyoweon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) $K^+$ channels. To determine whether taxifolin glycoside would block hERG $K^+$ channels, we recorded hERG $K^+$ currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG $K^+$ current in a concentration-dependent manner ($EC_{50}=9.6{\pm}0.7{\mu}M$). The activation curve of hERG $K^+$ channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG $K^+$ channels that function by facilitating activation and inactivation process.

Effects of GS-386 on the calcium current in rabbit atrial myocytes (GS-386이 단일 심근 세포의 Ca2+ 전류에 미치는 효과)

  • Park, Choon-ok;Chang, Kyeong-jae;Kim, Yang-mi;Haan, Jae-hee;Hong, Seong-geun
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.1
    • /
    • pp.37-47
    • /
    • 1994
  • The effects of the novel compound GS-386 on the calcium current were investigated in rabbit atrial myocytes. The calcium current was recorded during various depolarizations of 200 ms duration from a holding potential of -40 mV using the whole cell patch clamp technique. The calcium current was activated from -30 mV, reached maximum amplitude at +10 mV and almost disappeared at +50 mV. Superfusion of GS-386 led to a reduction of the calcium current amplitude dose-dependently and $ED_{50}$ was $2.5{\times}10^{-7}M$. But the dependence of the calcium current on the membrane potential was not altered by GS-386. The inactivation of the calcium currents showed single exponential curves in both before and after application of GS-386. The inactivation time constants before and after application of GS-386 were almost the same(35 ms and 32.5 ms). The steady-state inactivation curve of the calcium current was not shifted by GS-386. The calcium currents both before and after application of GS-386 recovered completely in 1 sec and the recovery time constants were about 200 ms in both cases. From the above results it is concluded that the novel compound GS-386 has calcium antagonistic property decreasing the calcium current.

  • PDF

Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons (랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도)

  • Han, Seong-kyu;Park, Jin-bong;Ryu, Pan-dong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

Effects of Zinc on Spontaneous Miniature GABA Release in Rat Hippocampal CA3 Pyramidal Neurons

  • Choi, Byung-Ju;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.59-64
    • /
    • 2006
  • The effects of $Zn^{2+}$ on spontaneous glutamate and GABA release were tested in mechanically dissociated rat CA3 pyramidal neurons which retained functional presynaptic nerve terminals. The spontaneous miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively) were pharmacologically isolated and recorded using whole-cell patch clamp technique under voltage-clamp conditions. $Zn^{2+}$ at a lower concentration $(30{\mu}M)$ increased GABAergic mIPSC frequency without affecting mIPSC amplitude, but it decreased both mIPSC frequency and amplitude at higher concentrations $({\ge}300{\mu}M)$. In contrast, $Zn^{2+}$ (3 to $100{\mu}M$) did not affect glutamatergic mEPSCs, although it slightly decreased both mIPSC frequency and amplitude at $300{\mu}M$ concentration. Facilitatory effect of $Zn^{2+}$ on GABAergic mIPSC frequency was occluded either in $Ca^{2+}$-free external solution or in the presence of $100{\mu}M$ 4-aminopyridine, a non-selective $K^{+}$ channel blocker. The results suggest that $Zn^{2+}$ at lower concentrations depolarizes GABAergic nerve terminals by blocking $K^{+}$ channels and increases the probability of spontaneous GABA release. This $Zn^{2+}$-mediated modulation of spontaneous GABAergic transmission is likely to play an important role in the regulation of neuronal excitability within the hippocampal CA3 area.

Effect of pH on Calcium-Activated Potassium Channels in Pulmonary Arterial Smooth Muscle Cells of the Rabbit

  • Lee, Suk-Ho;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.25 no.1
    • /
    • pp.17-26
    • /
    • 1991
  • Single smooth muscle cells of the rabbit pulmonary artery were isolated by treatment with collagenase and elastase. Using the patch clamp technique, potassium channel activity was recorded from the inside-out membrane patch. The channel had a sin히e channel conductance of about 360 pS in symmetrical concentration of K on both sides of the patch, 150 mM, and had a linear current-voltage relationship. During the application of 10 mM tetraethylammonium (TEA) to the intracellular membrane surface, the amplitude of single channel current was reduced and very rapid flickering appeared. The open probability $(P_0)$ of this channel was increased by increasing positivity of the potential across the patch membrane, with e-fold increase by 20 mV depolarization, and by increasing the internal $Ca^{2+}$ concentration. These findings are consistent with those of large conductance Ca-activated K channels reported in other tissues. But the shortening of the mean open time by increasing $[Ca^{2+}]_i$, was an unexpected result and one additional closed state which might be arisen from a block of the open channel by Ca binding was suggested. The $P_0-membrane$ potential relationship was modulated by internal pH. Decreasing pH reduced $P_0$. Increasing pH not only increased $P_0$ but also weakened the voltage dependency of the channel opening. The modulation of Ca-activated K channel by pH was thought to be related to the mechanism of regulation of vascular tone by the pH change.

  • PDF

Involvement of Thromboxane $A_2$ in the Modulation of Pacemaker Activity of Interstitial Cells of Cajal of Mouse Intestine

  • Kim, Jin-Ho;Choe, Soo-Jin;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • Although many studies show that thromboxane $A_2\;(TXA_2)$ has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of $TXA_2$ on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by $TXA_2$ in ICC with whole cell patch-clamp technique. Externally applied $TXA_2\;(5{\mu}M)$ produced membrane depolarization in current-clamp mode and increased tonic inward pacemaker currents in voltage-clamp mode. The tonic inward currents by $TXA_2$ were inhibited by intracellular application of GDP-${\beta}$-S. The pretreatment of ICC with $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker currents and suppressed the $TXA_2$-induced tonic inward currents. However, chelerythrine or calphostin C, protein kinase C inhibitors, did not block the $TXA_2$-induced effects on pacemaker currents. These results suggest that $TXA_2$ can regulate intestinal motility through the modulation of ICC pacemaker activities. This modulation of pacemaker activities by $TXA_2$ may occur by the activation of G protein and PKC independent pathway via extra and intracellular $Ca^{2+}$ modulation.