• 제목/요약/키워드: Patch-clamp technique

검색결과 155건 처리시간 0.075초

The Increase of Calcium Current in Smooth Myocytes of Mesenteric Arteriole of Rat with Diabetes Mellitus Induced Hypertension

  • Park Gyeong-Seon;Jang Yeon-Jin;Park Chun-Sik;Im Chae-Heon
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.61-62
    • /
    • 1999
  • ;The mechanisms inducing hypertension are actively investigated and are still challenging topics. Basically hypertension must be caused by the disorder of $Ca^{2+}$ metabolism in vascular smooth muscle, such as the increase of $Ca^{2+}$ influx, the decrease of ci+ efflux, or the change of sensitivity of contractile protein etc. The one of cause of the increase of ci+ influx may be the change of ci+ channel activity. Even though the relationships of ci+ channel activity and hypertension were studied using various hypertension models, still it is not clear how much change of $Ca^{2+}$ channel activity in diabetes mellitus (DM) induced hypertension is occurred. We induced DM hypertension in SD rat and compared the $Ca^{2+}$ channel activity with age-matched normotensive SD rat. For inducing DM hypertension, left kidney was removed with 200 gm rat and, after 1 month, 60 mg/kg of streptozotocin was injected into peritoneal space to induce diabetes mellitus. Usually after 4-6 weeks, hypertension was fully induced. For isolating vascular smooth muscle cells (VSMC), we used mesenteric arteriole (3rd - 4th branch of mesenteric artery) of which diameter is below 150 urn. VSMCs were isolated enzymatically. $Ca^{2+}$ current was measured using whole cell patch clamp technique. All experiments were performed at $37^{\circ}C$. The cell membrane area of VSMC of DM hypertensive rat is larger than that of control VSMC($36.6{\pm}3.64{\;}pF{\;}vs{\;}22.4{\pm}1.29{\;}pF, {\;}mean{\pm}S.E.$) When we compared the current amplitude, the $Ca^{2+}$ current amplitude in VSMC of DM hypertensive rat is much larger than that in VSMC of normotensive age-matched rat. After $Ca^{2+}$ current amplitude was normalized by cell membrane area, the current amplitude in DM hypertension is increased to $249.1{\pm}15.9{\;}%{\;}(mean{\pm}S.E.M)$, which means the ;absolute current amplitude is about 4 times larger in DM hypertension. When we compared the steady state activation and inactivation. there were no noticeable differences. From these results. one of cause of the DM hypertension is due to the increase of $Ca^{2+}$ current amplitude. But it need further study why the $Ca^{2+}$ current is so large in VSMC of DM hypertension and how much $Ca^{2+}$ influx through $Ca^{2+}$ channel contribute to the increase of intracellular $Ca^{2+}$ and eventually contribute to development of hypertension.ypertension.

  • PDF

The Effect of NO Donor on Contraction, Cytosolic $Ca^{2+}$ Level and Ionic Currents in Guinea-pig Ileal Smooth Muscle

  • Kwon, Seong-Chun;Park, Ki-Young;Ahn, Duck-Sun;Lee, Young-Ho;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.33-40
    • /
    • 2000
  • This study was designed to clarify the mechanism of the inhibitory action of a nitric oxide (NO) donor, 3-morpholino-sydnonimine (SIN-1), on contraction, cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$ and ionic currents in guinea-pig ileum. SIN-1 $(0.01{\sim}100\;{\mu}M)$ inhibited 25 mM KCl- or histamine $(10\;{\mu}M)-induced$ contraction in a concentration-dependent manner. SIN-1 reduced both the 25 mM KCl- and the histamine-stimulated increases in muscle tension in parallel with decreased $[Ca^{2+}]_i.$ Using the patch clamp technique with a holding potential of -60 mV, SIN-1 $(10\;{\mu}M)$ decreased peak Ba currents $(I_{Ba})$ by $30.9{\pm}5.4%$ (n=6) when voltage was stepped from -60 mV to +10 mV and this effect was blocked by ODQ $(1\;{\mu}M),$ a soluble guanylyl cyclase inhibitor. Cu/Zn SOD (100 U/ml), the free radical scavenger, had little effect on basal $I_{Ba},$ and SIN-1 $(10\;{\mu}M)$ inhibited peak $I_{Ba}$ by $32.4{\pm}5.8%$ (n=5) in the presence of Cu/Zn SOD. In a cell clamped at a holding-potential of -40 mV, application of $10\;{\mu}M$ histamine induced an inward current. The histamine-induced inward current was markedly and reversibly inhibited by $10\;{\mu}M$ SIN-1, and this effect was abolished by ODQ $(1\;{\mu}M).$ In addition, SIN-1 markedly increased the depolarization-activated outward $K^+$ currents in the all potential ranges. We concluded that SIN-1 inhibits smooth muscle contraction mainly by decreasing $[Ca^{2+}]_i$ resulted from the inhibition of L-type $Ca^{2+}$ channels and the inhibition of nonselective cation currents and/or by the activation of $K^+$ currents via a cGMP-dependent pathway.

  • PDF

Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

  • Kyeong, Kyu-Sang;Hong, Seung Hwa;Kim, Young Chul;Choi, Woong;Myung, Sun Chul;Lee, Moo Yeol;You, Ra Young;Kim, Chan Hyung;Kwon, So Yeon;Suzuki, Hikaru;Park, Yeon Jin;Jeong, Eun-Hwan;Kim, Hak Soon;Kim, Heon;Lim, Seung Woon;Xu, Wen-Xie;Lee, Sang Jin;Ji, Il Woon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.547-556
    • /
    • 2016
  • Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing $K^+$ channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward $K^+$ current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing $K^+$ channels (TASK-2). NIOK in the presence of $K^+$ channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

Requirement of β subunit for the reduced voltage-gated Na+ current of a Brugada syndrome patient having novel double missense mutation (p.A385T/R504T) of SCN5A

  • Na Kyeong Park;Seong Woo Choi;Soon-Jung Park;JooHan Woo;Hyun Jong Kim;Woo Kyung Kim;Sung-Hwan Moon;Hun-Jun Park;Sung Joon Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.313-322
    • /
    • 2024
  • Mutations within the SCN5A gene, which encodes the α-subunit 5 (NaV1.5) of the voltage-gated Na+ channel, have been linked to three distinct cardiac arrhythmia disorders: long QT syndrome type 3, Brugada syndrome (BrS), and cardiac conduction disorder. In this study, we have identified novel missense mutations (p.A385T/R504T) within SCN5A in a patient exhibiting overlap arrhythmia phenotypes. This study aims to elucidate the functional consequences of SCN5A mutants (p.A385T/R504T) to understand the clinical phenotypes. Whole-cell patch-clamp technique was used to analyze the NaV1.5 current (INa) in HEK293 cells transfected with the wild-type and mutant SCN5A with or without SCN1B co-expression. The amplitude of INa was not altered in mutant SCN5A (p.A385T/R504T) alone. Furthermore, a rightward shift of the voltage-dependent inactivation and faster recovery from inactivation was observed, suggesting a gain-of-function state. Intriguingly, the co-expression of SCN1B with p.A385T/R504T revealed significant reduction of INa and slower recovery from inactivation, consistent with the loss-of-function in Na+ channels. The SCN1B dependent reduction of INa was also observed in a single mutation p.R504T, but p.A385T co-expressed with SCN1B showed no reduction. In contrast, the slower recovery from inactivation with SCN1B was observed in A385T while not in R504T. The expression of SCN1B is indispensable for the electrophysiological phenotype of BrS with the novel double mutations; p.A385T and p.R504T contributed to the slower recovery from inactivation and reduced current density of NaV1.5, respectively.

생쥐 초기 배 발달 동안 변화되는 칼슘과 포타슘 이온 ([ $Ca^{2+}\;and\;K^+$ ] Concentrations Change during Early Embryonic Development in Mouse)

  • 강다원;허창기;최창록;박재용;홍성근;한재희
    • 한국수정란이식학회지
    • /
    • 제21권1호
    • /
    • pp.35-43
    • /
    • 2006
  • 이온 통로 및 이온 농도의 변화는 수정 현상을 포함한 다양한 세포 기능에 중요한 역할을 한다. 그러나 이러한 이온의 변화가 포유동물 배의 발달과정에 어떻게 관여하는지에 대해서는 알려진 바가 적다. 본 연구에서는 생쥐난자가 수정 이후 배 발달 과정을 거치는 동안 나타나는 칼슘과 포타슘 이온의 변화를 전기생리학적 실험 기법과 공초점 현미경을 이용하여 조사하였다. 수정 시에 나타나는 일시적인 세포내 칼슘 농도 변화는 활성 전류(수정 전류)와 함께 동반되었다. 그러나 수정과 같은 극적인 현상이나 자극이 없는 시기에는 세포내 칼슘 농도가 배 발달 시기와 상관없이 일정한 수준으로 유지되었다. 이것은 세포내외의 칼슘 농도의 보상현상으로도 설명할 수 있을 것이다. 배 발달이 진행됨에 따라 난관액의 포타슘 농도는 계속 증가하여 8세포기 배에서는 난자보다 26% 증가하였다. 상실배, 포배기에서는 포타슘 농도가 감소하였다. 배 발달이 진행됨에 따라 주로 포타슘 이온에 의해 조절되는 막 전압은 탈분극되고, 칼슘 이온의 세포 안으로의 유입은 점점 감소하였다. 생쥐 난자에 5 mM의 칼슘을 처리하였을 때 막 전압은 일시적인 과분극 현상을 보이다가 회복되었다. 칼슘 유입에 따른 막 전압 변화에 관여하는 포타슘 통로를 확인하기 위하여 포타슘 통로 차단제를 전 처리한 후 칼슘을 처리한 결과, 칼슘만을 단독으로 처리한 결과와 유의한 차이를 보이지 않았다. 막 전압의 과분극 현상은 잘 알려진 포타슘 통로 차단제인 TEA에 억제되지 않았다. 그리고 small conductance $Ca^{2+}$-activated 포타슘 통로 차단제 인 apamin에 의해서도 억제되지 않았다. 따라서 생쥐 난자에서 과분극을 유발시키는 포타슘 통로는 TEA와 apamin에 억제되지 않는 다른 포타슘 통로로 생각된다. 이상의 결과로부터 배 발달 동안 변화되는 칼슘과 포타슘 이온은 수정 및 초기 배 발달에 중요한 인자로써 작용할 것으로 생각되며, two-pore domain 포타슘 통로가 난자의 막 전압 조절에 관여할 가능성을 제시한다.