• 제목/요약/키워드: Patch-clamp

검색결과 307건 처리시간 0.021초

The Effect of Papaverine on the Calcium-dependent $K^+$ Current in Rat Basilar Smooth Muscle Cells

  • Bai, Guang-Yi;Cho, Jae-Woo;Han, Dong-Han;Yang, Tae-Ki;Gwak, Yong-Geun;Kim, Chul-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권5호
    • /
    • pp.375-379
    • /
    • 2005
  • Objective : Papaverine has been used in treating vasospasm following subarachnoid hemorrhage[SAH]. However, its action mechanism for cerebral vascular relaxation is not clear. Potassium channels are closely related to the contraction and relaxation of cerebral smooth muscle. Therefore, to identify the role of potassium and calcium channels in papaverine-induced vascular relaxation, we examine the effect of papaverine on potassium channels in freshly isolated smooth muscle cells from rat basilar artery. Methods : The isolation of rat basilar smooth muscle cells was performed by special techniques. The whole cell currents were recorded by whole cell patch clamp technique in freshly isolated smooth muscle cells from rat basilar artery. Papaverine was added to the bath solution. Results : Papaverine of $100{\mu}M$ into bath solution increased the amplitude of the outward $K^+$ current which was completely blocked by BKCa[large conductance calcium dependent potassium channels]blocker, IBX[iberiotoxin], and calcium chealator, BAPTA[l,2-bis[o-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid], in whole cell mode. Conclusion : These results strongly suggest that potassium channels may play roles in papaverine-induced vascular relaxation in rat basilar artery.

일차 배양 해마신경세포에서 NMDA- 및 Glutamate- 유도전류의 특성 (Characteristics of NMDA- and Glutamate-Induced Currents in Primary Cultured Rat Hippocampal Neurons)

  • 김일만;손은익;김동원;김인홍;임만빈;송대규;박원균;배재훈;최하영
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권11호
    • /
    • pp.1429-1436
    • /
    • 2000
  • Objectives : This study was performed in cultured rat hippocampal neurons to investigate the acute electrophysiological features of ionotropic glutamate receptors which act as a major excitatory neurotransmitter in mammalian brain. Method : Glutamate receptor agonists were applied into the bath solution embedding in whole-cell patch-clamp recording of single hippocampal neuron. Results : In voltage-clamped at -60mV and the presence of 1mmol $Mg^{2+}$, extracellulary applied NMDA did not induce any inward current. Both the elimination of $Mg^{2+}$ and addition of glycine in bath, however, elicited a NMDAinduced inward current. $Mg^{2+}$ block current was increased gradually in more negative potentials from -30mV, showing a negative slope in I-V plot with $Mg^{2+}$. Glutamate-induced current represented an outward rectification. A non-NMDA receptor component occupied about 40% of glutamate-induced current in the voltage range of -80mV to +60mV. Conclusion : Present study suggests that glutamate activates acutely the non-NMDA receptors which induces an inward current in the level of resting membrane potential. This makes the membrane potential increase and can activate the NMDA receptors that permit calcium influx against $Mg^{2+}$ block. At the depolarized state of neuron, there may be recovery mechanisms of membrane potential to repolarize irrespective of voltage-dependent potassium channels in the hippocampal neurons.

  • PDF

Contractile and Electrical Responses of Guinea-pig Gastric Smooth Muscle to Bradykinin

  • Kim, Chul-Soo;Jun, Jae-Yeoul;Kim, Sung-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.233-241
    • /
    • 1995
  • The nonapeptide bradykinin has been shown to exhibit an array of biological activities including relaxation/contraction of various smooth muscles. In order to investigate the effects of bradykinin on the contractility and the electrical activity of antral circular muscle of guinea-pig stomach, the isometric contraction and membrane potential were recorded. Also, using standard patch clamp technique, the $Ca^{2+}-activated$ K currents were recorded to observe the change in cytosolic $Ca^{2+}$ concentration. $0.4 {\mu}M$ bradykinin induced a triphasic contractile response (transient contraction-transient relaxation-sustained contraction) and this response was unaffected by pretreatment with neural blockers (tetrodotoxin, atropine and guanethidine) or with apamin. Bradykinin induced hyperpolarization of resting membrane potential and enhanced the amplitude of slow waves and spike potentials. The enhancement of spike potentials was blocked by neural blockers. Both the bradykinin-induced contractions and changes in membrane potential were reversed by the selective $B_2$-receptor antagonist $(N{\alpha}-adamantaneacetyl-_{D}-Arg-[Hyp, Thy,_{D}-Phe]-bradykinin)$. In whole-cell patch clamp experiment, we held the membrane potential at -20 mV and spontaneous and transient changes of Ca-activated K currents were recorded. Bradykinin induced a large transient outward current, consistent with a calcium-releasing action of bradykinin front the intracellular calcium pool, because such change was blocked by pretreatment with caffeine. Bradykinin-induced contraction was also blocked by pretreatment with caffeine. From these results, it is suggested that bradykinin induces a calciumrelease and contraction through the $B_{2}$ receptor of guinea-pig gastric smooth muscle. Enhancement of slow wave activity is an indirect action of bradykinin through enteric nerve cells embedded in muscle strip.

  • PDF

Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene $K^+$ Channels

  • Yun, Jihyun;Bae, Hyemi;Choi, Sun Eun;Kim, Jung-Ha;Choi, Young Wook;Lim, Inja;Lee, Chung Soo;Lee, Min Won;Ko, Jae-Hong;Seo, Seong Jun;Bang, Hyoweon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) $K^+$ channels. To determine whether taxifolin glycoside would block hERG $K^+$ channels, we recorded hERG $K^+$ currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG $K^+$ current in a concentration-dependent manner ($EC_{50}=9.6{\pm}0.7{\mu}M$). The activation curve of hERG $K^+$ channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG $K^+$ channels that function by facilitating activation and inactivation process.

Ionic Dependence and Modulatory Factors of the Background Current Activated by Isoprenaline in Rabbit Ventricular Cells

  • Leem, Chae-Hun;Lee, Suk-Ho;So, In-Suk;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.15-25
    • /
    • 1992
  • In order to elucidate the properties of the background current whole cell patch clamp studies were performed in rabbit ventricular cells. Ramp pulses of ${\pm}80\;mV$ from holding potential of 40 mV(or 20 mV) at the speed of 0.8 V/sec were given every 30 sec(or 10 sec) and current-voltage diagrams(I-V curve) were obtained. For the activation of the background current isoprenaline, adenosine 3',5'-cyclic monophosphate(dBcAMP), guanosine 3',5'-cyclic monophosphate(cGMP), and $N^6$-2'-o-dibutyryladenosine 3',5'-cyclic monophosphate(dBcAMP) were applied after all known current systems were blocked with 2mM Ba, 1 mM Cd ,5 mM Ni, 10 ${\mu}M$ diltiazem, 10 ${\mu}m$ ouabain, and 20 mM tetraethylammonium(TEA). The conductance of background current in control was $0.65{\pm}0.69$ nS at 0 mV, its I-V curves was almost linear and reversed near 50 mV. When there was no taurine in pipette solution, isoprenaline hardly activated the background current but when taurine existed in pipette solution, isoprenaline activated the larger background current. Cyclic AMP or cyclic GMP alone had little effect on the activation of the background current, while cGMP potentiated cGMP effect. When the background current was activated with cGMP and cAMP, isoprenaline could not further increased the background current. The background current activated by isoprenaline depended on extracellular $Cl^-$ concentration and its reversal potential was shifted according to chloride equilibrium potential. The change of extracellular $Na+$ concentration had little effect on reversal potential of the background current activated by isoprenaline.

  • PDF

GS-386이 단일 심근 세포의 Ca2+ 전류에 미치는 효과 (Effects of GS-386 on the calcium current in rabbit atrial myocytes)

  • 박춘옥;장경재;김양미;한재희;홍성근
    • 대한수의학회지
    • /
    • 제34권1호
    • /
    • pp.37-47
    • /
    • 1994
  • The effects of the novel compound GS-386 on the calcium current were investigated in rabbit atrial myocytes. The calcium current was recorded during various depolarizations of 200 ms duration from a holding potential of -40 mV using the whole cell patch clamp technique. The calcium current was activated from -30 mV, reached maximum amplitude at +10 mV and almost disappeared at +50 mV. Superfusion of GS-386 led to a reduction of the calcium current amplitude dose-dependently and $ED_{50}$ was $2.5{\times}10^{-7}M$. But the dependence of the calcium current on the membrane potential was not altered by GS-386. The inactivation of the calcium currents showed single exponential curves in both before and after application of GS-386. The inactivation time constants before and after application of GS-386 were almost the same(35 ms and 32.5 ms). The steady-state inactivation curve of the calcium current was not shifted by GS-386. The calcium currents both before and after application of GS-386 recovered completely in 1 sec and the recovery time constants were about 200 ms in both cases. From the above results it is concluded that the novel compound GS-386 has calcium antagonistic property decreasing the calcium current.

  • PDF

랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도 (Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons)

  • 한성규;박진봉;류판동
    • 대한수의학회지
    • /
    • 제40권2호
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

세포외 분비시 막 캐패시턴스를 측정하기 위한 위상감지법(phase detector technique)의 이론적 분석. (Theoretical Analysis of Phase Detector Technique for the Measurement of Cell Membrane Capacitance During Exocytosis)

  • Cha, Eun-Jong;Goo, Yong-Sook;Lee, Tae-Soo
    • 한국의학물리학회지:의학물리
    • /
    • 제3권2호
    • /
    • pp.43-57
    • /
    • 1992
  • 위상감지법(phase detector technique)은 세포의 막 캐패시턴스(membrane capacitance)를 실시간적으로 측정할 수 있는 유일한 방법이나 측정이 행해지는 동안 세포의 상태가 끊임없이 변화하기 때문에 피할 수 없는 측정오차가 존재한다. 본 연구는 이 오차의 근원을 분석하여 위상감지법의 실용한계를 규정하고자 하였다. 이론적 분석에 기초하여 다음과 같은 사실을 밝힐 수 있었다. 1) access conductance와 membrane conductance의 변화에 기인하는 측정오차를 줄이기 위해서는 초기 위상치를 올바로 선택하여야 한다. 2) 이 때 세포를 여기시키기 위해 인가하는 전압의 주파수를 알맞게 선택하여야 한다. 3) 그러나 초기 위상치가 정해진 이후의 위상 변화는 막 캐패시턴스의 측정에 큰 영향을 미치지 않는다. 4) 초기 위상을 적절히 선택하였다 하더라도 세포외 분비시 막 캐패시턴스가 크게 증가하는 경우에는 비례상수에 오차가 발생한다. 이 때 발생하는 오차는 측정기간 동안 비례상수를 되풀이하여(iteration) 보정함으로써 방지할 수 있다. 이상의 결과는 향후 위상감지법을 사용할 때 유용한 설용한계를 제공하리라 생각된다.

  • PDF

Korean Red Ginseng Extract Activates Non-NMDA Glutamate and GABAA Receptors on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Park, Seon-Ah;Park, Soo-Joung;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.219-225
    • /
    • 2011
  • Korean red ginseng (KRG) is a valuable and important traditional medicine in East Asian countries and is currently used extensively for botanical products in the world. KRG has both stimulatory and inhibitory effects on the central nervous system (CNS) suggesting its complicated action mechanisms. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Some studies reported that KRG has antinociceptive effects, but there are few reports of the functional studies of KRG on the SG neurons of the Vc. In this study, a whole cell patch clamp study was performed to examine the action mechanism of a KRG extract on the SG neurons of the Vc from juvenile mice. KRG induced short-lived and repeatable inward currents on all the SG neurons tested in the high chloride pipette solution. The KRG-induced inward currents were concentration dependent and were maintained in the presence of tetrodotoxin, a voltage gated $Na^+$ channel blocker. The KRG-induced inward currents were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and/or picrotoxin, a gamma-aminobutyric acid $(GABA)_A$ receptor antagonist. However, the inward currents were not suppressed by d,l-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. These results show that KRG has excitatory effects on the SG neurons of the Vc via the activation of non-NMDA glutamate receptor as well as an inhibitory effect by activation of the $GABA_A$ receptor, indicating the KRG has both stimulatory and inhibitory effects on the CNS. In addition, KRG may be a potential target for modulating orofacial pain processing.