• Title/Summary/Keyword: Patch clamp

검색결과 307건 처리시간 0.105초

Spontaneous Electrical Activity of Cultured Interstitial Cells of Cajal from Mouse Urinary Bladder

  • Kim, Sun-Ouck;Jeong, Han-Seong;Jang, Sujeong;Wu, Mei-Jin;Park, Jong Kyu;Jiao, Han-Yi;Jun, Jae Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.531-536
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) from the urinary bladder regulate detrusor smooth muscle activities. We cultured ICCs from the urinary bladder of mice and performed patch clamp and intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) imaging to investigate whether cultured ICCs can be a valuable tool for cellular functional studies. The cultured ICCs displayed two types of spontaneous electrical activities which are similar to those recorded in intact bladder tissues. Spontaneous electrical activities of cultured ICCs were nifedipine-sensitive. Carbachol and ATP, both excitatory neurotransmitters in the urinary bladder, depolarized the membrane and increased the frequency of spike potentials. Carbachol increased $[Ca^{2+}]_i$ oscillations and basal $Ca^{2+}$ levels, which were blocked by atropine. These results suggest that cultured ICCs from the urinary bladder retain rhythmic phenotypes similar to the spontaneous electrical activities recorded from the intact urinary bladder. Therefore, we suggest that cultured ICCs from the urinary bladder may be useful for cellular and molecular studies of ICCs.

Reactive oxygen species increase neuronal excitability via activation of nonspecific cation channel in rat medullary dorsal horn neurons

  • Lee, Hae In;Park, Byung Rim;Chun, Sang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.371-376
    • /
    • 2017
  • The caudal subnucleus of the spinal trigeminal nucleus (medullary dorsal horn; MDH) receives direct inputs from small diameter primary afferent fibers that predominantly transmit nociceptive information in the orofacial region. Recent studies indicate that reactive oxygen species (ROS) is involved in persistent pain, primarily through spinal mechanisms. In this study, we aimed to investigate the role of xanthine/xanthine oxidase (X/XO) system, a known generator of superoxide anion ($O_2{^-}$), on membrane excitability in the rat MDH neurons. For this, we used patch clamp recording and confocal imaging. An application of X/XO ($300{\mu}M/30mU$) induced membrane depolarization and inward currents. When slices were pretreated with ROS scavengers, such as phenyl N-tert-butylnitrone (PBN), superoxide dismutase (SOD), and catalase, X/XO-induced responses decreased. Fluorescence intensity in the DCF-DA and DHE-loaded MDH cells increased on the application of X/XO. An anion channel blocker, 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), significantly decreased X/XO-induced depolarization. X/XO elicited an inward current associated with a linear current-voltage relationship that reversed near -40 mV. X/XO-induced depolarization reduced in the presence of $La^{3+}$, a nonselective cation channel (NSCC) blocker, and by lowering the external sodium concentration, indicating that membrane depolarization and inward current are induced by influx of $Na^+$ ions. In conclusion, X/XO-induced ROS modulate the membrane excitability of MDH neurons, which was related to the activation of NSCC.

Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells

  • Shin, Sung Eun;Li, Hongliang;Kim, Han Sol;Kim, Hye Won;Seo, Mi Seon;Ha, Kwon-Soo;Han, Eun-Taek;Hong, Seok-Ho;Firth, Amy L.;Choi, Il-Whan;Bae, Young Min;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.225-232
    • /
    • 2017
  • We demonstrated the effect of nortriptyline, a tricyclic antidepressant drug and serotonin reuptake inhibitor, on voltage-dependent $K^+$ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Nortriptyline inhibited Kv currents in a concentration-dependent manner, with an apparent $IC_{50}$ value of $2.86{\pm}0.52{\mu}M$ and a Hill coefficient of $0.77{\pm}0.1$. Although application of nortriptyline did not change the activation curve, nortriptyline shifted the inactivation current toward a more negative potential. Application of train pulses (1 or 2 Hz) did not change the nortriptyline-induced Kv channel inhibition, suggesting that the effects of nortiprtyline were not use-dependent. Preincubation with the Kv1.5 and Kv2.1/2.2 inhibitors, DPO-1 and guangxitoxin did not affect nortriptyline inhibition of Kv channels. From these results, we concluded that nortriptyline inhibited Kv channels in a concentration-dependent and state-independent manner independently of serotonin reuptake.

Inhibition of K+ outward currents by linopirdine in the cochlear outer hair cells of circling mice within the first postnatal week

  • Kang, Shin Wook;Ahn, Ji Woong;Ahn, Seung Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.251-257
    • /
    • 2017
  • Inhibition of $K^+$ outward currents by linopirdine in the outer hair cells (OHCs) of circling mice (homozygous (cir/cir) mice), an animal model for human deafness (DFNB6 type), was investigated using a whole cell patch clamp technique. Littermate heterozygous (+/cir) and ICR mice of the same age (postnatal day (P) 0 -P6) were used as controls. Voltage steps from -100 mV to 40 mV elicited small inward currents (-100 mV~-70 mV) and slow rising $K^+$ outward currents (-60 mV~40 mV) which activated near -50 mV in all OHCs tested. Linopirdine, a known blocker of $K^+$ currents activated at negative potentials ($I_{K,n}$), did cause inhibition at varying degree (severe, moderate, mild) in $K^+$ outward currents of heterozygous (+/cir) or homozygous (cir/cir) mice OHCs in the concentration range between 1 and $100{\mu}m$, while it was apparent only in one ICR mice OHC out of nine OHCs at $100{\mu}m$. Although the half inhibition concentrations in heterozygous (+/cir) or homozygous (cir/cir) mice OHCs were close to those reported in $I_{K,n}$, biophysical and pharmacological properties of $K^+$ outward currents, such as the activation close to -50 mV, small inward currents evoked by hyperpolarizing steps and TEA sensitivity, were not in line with $I_{K,n}$ reported in other tissues. Our results show that the delayed rectifier type $K^+$ outward currents, which are not similar to $I_{K,n}$ with respect to biophysical and pharmacological properties, are inhibited by linopirdine in the developing (P0~P6) homozygous (cir/cir) or heterozygous (+/cir) mice OHCs.

Red ginseng extract blocks histamine-dependent itch by inhibition of H1R/TRPV1 pathway in sensory neurons

  • Jang, Yongwoo;Lee, Wook-Joo;Hong, Gyu-Sang;Shim, Won-Sik
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.257-264
    • /
    • 2015
  • Background: Korean Red Ginseng-a steamed root of Panax ginseng Meyer-has long been used as a traditional medicine in Asian countries. Its antipruritic effect was recently found, but no molecular mechanisms were revealed. Thus, the current study focused on determining the underlying molecular mechanism of Korean Red Ginseng extract (RGE) against histamine-induced itch at the peripheral sensory neuronal level. Methods: To examine the antipruritic effect of RGE, we performed in vivo scratching behavior test in mice, as well as in vitro calcium imaging and whole-cell patch clamp experiments to elucidate underlying molecular mechanisms. Results: The results of our in vivo study confirmed that RGE indeed has an antipruritic effect on histamine-induced scratching in mice. In addition, RGE showed a significant inhibitory effect on histamine-induced responses in primary cultures of mouse dorsal root ganglia, suggesting that RGE has a direct inhibitory effect on sensory neuronal level. Results of further experiments showed that RGE inhibits histamine-induced responses on cells expressing both histamine receptor subtype 1 and TRPV1 ion channel, indicating that RGE blocks the histamine receptor type 1/TRPV1 pathway in sensory neurons, which is responsible for histamine-dependent itch sensation. Conclusion: The current study found for the first time that RGE effectively blocks histamine-induced itch in peripheral sensory neurons. We believe that the current results will provide an insight on itch transmission and will be helpful in understanding how RGE exerts its antipruritic effects.

Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki;Kajikawa, Yoshinao;Kimura, Masahiro;Saitoh, Naoto;Tsujimoto, Tetsuhiro
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권2호
    • /
    • pp.69-76
    • /
    • 2004
  • A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.

동방결절에서 과분극에 의해 활성화되는 내향전류에 대한 Cyclic-GMP의 영향 (Effects of Cyclic-GMP on Hyperpolarization-activated inward Current $(I_f)$ in Sino-atrial Node Cells of Rabbit)

  • 유신;호원경;엄융의
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.731-739
    • /
    • 1997
  • The aim of present study is to investigate the effects of cGMP on hyperpolarization activated inward current ($I_f$), pacemaker current of the heart, in rabbit sino-atrial node cells using the whole-cell patch clamp technique. When sodium nitroprusside (SNP, $80{\mu}M$), which is known to activate guanylyl cyclase, was added, $I_f$ amplitude was increased and its activation was accelerated. However, when $I_f$ was prestimulated by isopreterenol (ISO, $1{\mu}M$), SNP reversed the effect of ISO. In the absence of ISO, SNP shifted activation curve rightward. On the contrary in the presence of ISO, SNP shifted activation curve in opposite direction. $8Br-cGMP(100\;{\mu}M)$, more potent PKG activator and worse PDE activator than cGMP, also increased basal $I_f$ but did not reverse stimulatory effect of ISO. It was probable that PKG activation seemed to be involved in SNP-induced basal $I_f$ increase. The fact that SNP inhibited ISO-stimulated $I_f$ suggested cGMP antagonize cAMP action via the activation of PDE. This possibility was supported by experiment using 3-isobutyl-1-methylxanthine (IBMX), non-specific PDE inhibitor. SNP did not affect $I_f$ when $I_f$ was stimulated by $20{\mu}M$ IBMX. Therefore, cGMP reversed the stimulatory effect of cAMP via cAMP breakdown by activating cGMP-stimulated PDE. These results suggest that PKG and PDE are involved in the modulation of $I_f$ by cGMP: PKG may facilitate $I_f$ and cGMP-stimulated PDE can counteract the stimulatory action of cAMP.

  • PDF

Modulation of Outward Potassium Currents by Nitric Oxide in Longitudinal Smooth Muscle Cells of Guinea-pig Ileum

  • Kwon, Seong-Chun;Rim, Se-Joong;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.225-232
    • /
    • 1998
  • To investigate the possible involvement of outward potassium ($K^+$) currents in nitric oxide-induced relaxation in intestinal smooth muscle, we used whole-cell patch clamp technique in freshly dispersed guinea-pig ileum longitudinal smooth muscle cells. When cells were held at -60 mV and depolarized from -40 mV to -50 mV in 10 mV increments, sustained outward $K^+$ currents were evoked. The outward $K^+$ currents were markedly increased by the addition of 10 ${\mu}M$ sodium nitroprusside (SNP). 10 ${\mu}M$ S-nitroso-N-acetylpenicillamine (SNAP) and 1 mM 8-Bromo-cyclic GMP (8-Br-cGMP) also showed a similar effect to that of SNP. 1 mM tetraethylammonium (TEA) significantly reduced depolarization-activated outward $K^+$ currents. SNP-enhanced outward $K^+$ currents were blocked by the application of TEA. High EGTA containing pipette solution (10 mM) reduced the control currents and also inhibited the SNP-enhanced outward $K^+$ currents. 5 mM 4-aminopyridine (4-AP) significantly reduced the control currents but showed no effect on SNP-enhanced outward $K^+$ currents. 0.3 ${\mu}M$ apamin and 10 ${\mu}M$ glibenclamide showed no effect on SNP-enhanced outward $K^+$ currents. 10 ${\mu}M$ 1H-[1,2,4]oxadiazolo [4,3-a]quinoxaline-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase, significantly blocked SNP-enhanced $K^+$ currents. We conclude that NO donors activate the $Ca^{2+}-activated$ $K^+$ channels in guinea-pig ileal smooth muscle via activation of guanylate cyclase.

  • PDF

Functional Cardiomyocytes Formation Derived from Mouse Embryonic Stem Cells

  • Shin, Hyun-Ah;Lee, Keum-Sil;Cho, Hwang-Yoon;Park, Sae-Young;Kim, Eun-Young;Lee, Young-Jae;Park, Se-Pill;Lim, Jin-Ho
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.100-100
    • /
    • 2003
  • Pluripotent embryonic stem (ES) cells differentiate spontaneously into beating cardiomyocytes via embryo-like aggregates. We describe the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. To induce cardiomyocytic differentiation, mES03 cells were dissociated and allowed to aggregate (EB formation) at the presence of 0 75% dimethyl sulfoxide (DMSO) for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EBs were plated onto gelatin-coated dish for differentiation. Spontaneously contracting colonies which appeared in approximately 4-5 days upon differentiation. Expression of cardiac-specific genes were determined by RT-PCR. Rebust expression of myosin light chain (MLC-2V), cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta(\beta$-MHC), cardiac transcription factor GATA4 and skeletal muscle-specific ${\alpha}_1$-subunit of the L-type calcium channel (${\alpha}_1 CaCh_{sm}$) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel (${\alpha}_1$CaCh) were revealed at a low level. Strikingly, the expression of atrial natriuretic factor (ANF) was not detected. When spontaneous contracting cell masses were examined their electrophysiological features by patch-clamp technique, it showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes displayed biochemical and electrophysiological properties of cardiomyocytes and DMSO enhanced development of cardiomyocytes in 4+/4- method.

  • PDF

Isolation and electrical characterization of the rat spinal dorsal horn neurons

  • Han, Seong-Kyu;Lee, Mun-Han;Ryu, Pan-Dong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.175-175
    • /
    • 1996
  • The spinal dorsal horn is the area where primary afferent fibers terminate and cutaneous sensory information is Processed. A number of putative neurotransmitter substances, including excitatory and inhibitory amino acids and peptides, are present in this region and sites and cellular mechanisms of their actions have been a target of numerous studies. In this study, single neurons were acutely isolated and the properties of whole cell current and responses to excitatory and inhibitory neurotransmitters were studied by the patch clamp method. Young rats (7-14 days) were anesthetized with diethyl-ether, and the lumbar spinal cord was excised and cut transversely at a thickness of 30$\mu\textrm{m}$ by Vibroslicer. The treatment of spinal slices with low concentration of proteases (pronase and thermolysin 0.75 mg/$m\ell$) and mechanical dissociation yielded isolated neurons with near intact morphology. Multipolar, ellipsoidal and bipolar, and pyramidal cells were shown. By applying step voltage pulses to neurons held at -70 mV, two types of inward currents and one outward currents observed. The fast activating and inactivating inward current was the Na$\^$+/ current because of its fast kinetics and blocking by 0.5${\mu}$M TTX, a specific blocker of Na$\^$+/ channel. The second type of inward currents were sustained. Based on their kinetics and current-voltage relations, it was likely that the second type of inward current was the voltage-dependent Ca$\^$2+/ current. In the presence of TTX, the steady-state currents mainly represented outward K$\^$+/ current which looked like the delayed rectifier K$\^$+/ current. In addition, the membrane currents produced by agonist of excitatory amino acid (EAA) receptor and the endogenous transmitter candidate L-glutamate were recorded in isolated whole-cell voltage clamped neurons as well as responses to inhibitory amino acids (${\gamma}$-amino butyric acid, glycine). Drugs were applied by a method that allows complete exchange of the solution within 1 sec; an infinite number of solutions can be applied to a single cell.

  • PDF