• Title/Summary/Keyword: Pasternak's foundation

Search Result 170, Processing Time 0.023 seconds

A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium

  • Aissani, Khadidja;Bouiadjra, Mohamed Bachir;Ahouel, Mama;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.743-763
    • /
    • 2015
  • This work presents a new nonlocal hyperbolic shear deformation beam theory for the static, buckling and vibration of nanoscale-beams embedded in an elastic medium. The present model is able to capture both the nonlocal parameter and the shear deformation effect without employing shear correction factor. The nonlocal parameter accounts for the small size effects when dealing with nanosize structures such as nanobeams. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanoscale-beam are obtained using Hamilton's principle. The effect of the surrounding elastic medium on the deflections, critical buckling loads and frequencies of the nanobeam is investigated. Both Winkler-type and Pasternak-type foundation models are used to simulate the interaction of the nanobeam with the surrounding elastic medium. Analytical solutions are presented for a simply supported nanoscale-beam, and the obtained results compare well with those predicted by the other nonlocal theories available in literature.

Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.329-342
    • /
    • 2017
  • In this paper, the dispersion characteristics of elastic waves propagation in sandwich nano-beams with functionally graded (FG) face-sheets reinforced with carbon nanotubes (CNTs) is investigated based on various high order shear deformation beam theories (HOSDBTs) as well as nonlocal strain gradient theory (NSGT). In order to align CNTs as symmetric and asymmetric in top and bottom face-sheets with respect to neutral geometric axis of the sandwich nano-beam, various patterns are employed in this analysis. The sandwich nano-beam resting on Pasternak foundation is subjected to thermal, magnetic and electrical fields. In order to involve small scale parameter in governing equations, the NSGT is employed for this analysis. The governing equations of motion are derived using Hamilton's principle based on various HSDBTs. Then the governing equations are solved using analytical method. A detailed parametric study is conducted to study the effects of length scale parameter, different HSDBTs, the nonlocal parameter, various aligning of CNTs in thickness direction of face-sheets, different volume fraction of CNTs, foundation stiffness, applied voltage, magnetic intensity field and temperature change on the wave propagation characteristics of sandwich nano-beam. Also cut-off frequency and phase velocity are investigated in detail. According to results obtained, UU and VA patterns have the same cut-off frequency value but AV pattern has the lower value with respect to them.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

  • Bounouara, Fatima;Benrahou, Kouider Halim;Belkorissat, Ismahene;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.227-249
    • /
    • 2016
  • The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton's principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions

  • Soleimani-Javid, Zeinab;Arshid, Ehsan;Khorasani, Mohammad;Amir, Saeed;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.449-460
    • /
    • 2021
  • Flexoelectricity is an interesting materials' property that is more touchable in small scales. This property beside the sandwich structures placed in the center of scientists' attention due to their extraordinary effects on the mechanical properties. Furthermore, in the passage of decades, more elaborated sandwich structures took into consideration results from using honeycomb core. This kind of structure, inspiring from honeycomb core, provides more stiffness to weight ratio, which plays a crucial role in different industries. In this paper, based on the Love-Kirchhoff's hypothesis, Hamilton's principle, modified couple stress theory and Fourier series analytical method, equations of motion for a sandwich plate containing a honeycomb core integrated by two face-sheets have derived and solved analytically. The equations of both face sheets have derived by flexoelectricity consideration. Moreover, it should be noticed that the whole structure rests on the visco-Pasternak foundation. Conducting current research provided an acceptable and throughout study based on flexoelectricity to address the effect of materials' characteristics, length-scale parameter, aspect, and thickness ratios and boundary conditions on the natural frequency of honeycomb sandwich plates. Also, based on the presented figures and tables, there is a close agreement between previous studies and recent work. Due to the high ratio of strength to weight, current model analyzing is capable of taking into account for different vehicles' manufacturing in a high range of industries.

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad;Eyvazian, Arameh;Karbon, Mohammed;Tounsi, Abdelouahed;Lampani, Luca;Sebaey, Tamer A.
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.331-343
    • /
    • 2020
  • In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.

A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations

  • Nebab, Mokhtar;Benguediab, Soumia;Atmane, Hassen Ait;Bernard, Fabrice
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.415-431
    • /
    • 2020
  • In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions (linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by using an analytical solution of Navier's technique. The present results and validations of our modal with literature are presented that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on dynamics responses of advanced composite plates.