• Title/Summary/Keyword: Paste Electrode

Search Result 255, Processing Time 0.027 seconds

An Improvement in the Properties of MH Electrode of Ni/MH Battery by the Copper Coating (Ni/MH 전지에서 Cu 도금에 의한 음극활물질의 전극 특성 향상)

  • Cho, Jin Hun;Kim, In Jung;Lee, Yun Sung;Nahm, Kee Suk;Kim, Ki Ju;Lee, Hong Ki
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.568-574
    • /
    • 1997
  • The effect of microencapsulation of maetal hydride (MH) with copper on the electrode performance of a Ni/MH battery has been investigated. The MH electrodes were prepared with a combination of cold press and paste methods. The discharge capacity of the electrode increased with an addition of small amounts if CMC into the electrode, but decreased when heat-treated in an oxygen-free nitrogen flow. The capacity of a Cu-coated $LaNi_5$ electrode was higher than that of LaNi5electrode. The discharge capacity of the electrode prepared with Cu-coated $LaNi_5$ increased with the increase of copper content in the electrode. It is considered that the increase of copper content enhanced the current density on the electrode surface, leading to the increase of the discharge capacity The MH electrode coated by an acidic electroless plating method showed much higher discharge capacity than that using an alkaline electroless plating method. The discharge capacity of the $LaNi_{4.5}Al_{0.5}$ electrode was higher than that of the $LaNi_5$ electrode. Also, the effect of microencapsulation on the deactivation of $LaNi_5$ was studied using an absorption-desorption cycle in CO-containing hydrogen.

  • PDF

Effects of Deposition Method of Thermally Decomposed Platinum Counter Electrodes on the Performance of Dye-Sensitized Solar Cells (염료 감응형 태양전지 효율에 미치는 백금 상대 전극 제조공정의 영향)

  • SEO, HYUN WOO;BAEK, HYUN DUK;KIM, DONG MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this work, two different platinum (Pt) counter electrodes have been prepared by spin coating a Pt solution and screen printing a Pt paste on fluorine doped tin oxide (FTO) glass substrate followed by sintering at $380^{\circ}C$ for 30 min. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) analyses of the Pt electrodes showed that the spin coated electrode was catalytically more active than the screen printed electrode. The above result agrees well with the surface morphology of the electrodes studied by atomic force microscopy (AFM) and the photovoltaic performance of the dye-sensitized solar cells (DSSCs) fabricated with the Pt electrodes. Moreover, calculation of current density-voltage (j-V) curves according to diode model with the parameters obtained from the experimental j-V curves and the EIS data of the DSSCs provided a quantitative insight about how the catalytic activity of the counter electrodes affected the photovoltaic performance of the cells. Even though the experimental situations involved in this work are trivial, the method of analyses outlined here gives a strong insight about how the catalytic activity of a counter electrode affects the photovoltaic performance of a DSSC. This work, also, demonstrates how the photovoltaic performance of DSSCs can be improved by tuning the performance of counter electrode materials.

Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide

  • Maulidiyah, Maulidiyah;Azis, Thamrin;Lindayani, Lindayani;Wibowo, Dwiprayogo;Salim, La Ode Agus;Aladin, Andi;Nurdin, Muhammad
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.394-401
    • /
    • 2019
  • The unique study of TiO2 sol-gel modified carbon paste electrode (CPE) nanocomposites have been developed for electrochemical sensor detecting fipronil pesticide compound. We develop the easy synthesized TiO2 via a sol-gel method and modified in CPE which applied electrochemical system as cyclic voltammetry (CV) because the concentration is proportional with current peaks. We discover the TiO2 optimal mass used of 0.1 g which is compared with 0.7 g carbon and 0.3 mL paraffin. It has high-current anodic (Ipa) of 1.13×103 μA and high-current cathodic (Ipc) -0.96×103 μA in scan rate of 0.5 V/s. The limit of detection (LOD) of fipronil has been determined of 34.0×10-5 μM in percent recovery of 0.8%. Its high-stability for lifetime TiO2-CPE nanocomposites was expressed for 13 days which mean that can be used for detecting fipronil pesticide.

Anodic Stripping Voltammetric Determination of Cadmium(Ⅱ) Using Alga-Modified Carbon Paste Electrodes (Alga변성전극을 이용한 Cadmium(Ⅱ)의 양극벗김 전압-전류법적 정량)

  • Bae, Zun Ung;Choi, Jung Eun;Chang, Hye Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.28-35
    • /
    • 1998
  • Microorganisms such as alga are able to uptake toxic and heavy metal ions. After Cd(Ⅱ) was preconcentrated on the carbon paste electrode constructed by incorporating alga (Anabaena), it was determined with differential pulse anodic stripping voltammetry. A well-defined oxidation peak of Cd(Ⅱ) was obtained at - 0.75 V vs. SCE. We investigated the optimum conditions using the peak, which are the effect of the amount of alga, pH, ionic strength, temperature, and preconcentration time on the preconcentration of Cd(Ⅱ) and that of the reduction time and potential on the reduction of Cd(Ⅱ) preconcentrated. Calibration curve for the determination of Cd(Ⅱ) was linear over the range of $1.0{\times}10^6\;M\;to\;8.0{\times}10^6$\;M (R=0.9978) and the detection limit was $5.0{\times}10^{-7}$\;M. The relative standard deviation was 3.1% (n=6) for $7.0{\times}10^{-6}\;M Cd(Ⅱ). In regeneration of the electrode surface with 0.1 M HCl, the response was reproducible continuously by 10 times.

  • PDF

Fabrication and Characterization of piezoelectric thick films prepared by Screen Printing Method (Screen Printing법을 이용한 압전 후막의 제조 및 특성연구)

  • 김상종;최형욱;백동수;최지원;윤석진;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.873-876
    • /
    • 2000
  • Characteristics of piezoelectric thick films prepared by screen printing method were investigated. The piezoelectric thick films were printed using Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$system. The lower electrodes were coated with various thickness of Ag-Pd by screen printing to investigate the effect as a diffusion barrier and deposited with Pt by sputtering on Ag-Pd. The ceramic paste was prepared by mixing powder and binder with various ratios using three roll miller. The fabricated thick films were burned out at 650$^{\circ}C$ and sintered at 950$^{\circ}C$ in the O$_2$condition for each 20, 60min after printing with 350mesh screen. The thickness of piezoelectric thick film was 15∼20 $\mu\textrm{m}$ and the Ag-Pd electrode acted as a diffusion barrier above 3 $\mu\textrm{m}$ thickness. When the lower electrode Ag-Pd was 6 $\mu\textrm{m}$ and the piezoelectric thick films were sintered by 2nd step (650$^{\circ}C$/20min and 950$^{\circ}C$/1h) using paste mixed Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$$.$ MnO$_2$+ Bi$_2$O$_3$. V$_2$O$\_$5/ and binder in the ratio of 70:30, the remnant polarization of thick film was 9.1 ${\mu}$C /cm$^2$.

  • PDF

Electrochemical Determination of Ag(I) Ion at Chemically Modified Carbon-Paste Electrode Containing 1,5,9,13-Tetrathiacyclohexadecane (1,5,9,13-Tetrathiacyclohexadecane 수식전극을 사용한 Ag(I)의 전기화학적 정량)

  • Ha, Kwang Soo;Jang, Mi-Kyeong;Seo, Moo Lyong
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.187-195
    • /
    • 1997
  • Chemically modified electrodes(CMEs) for Ag(I) were constructed by incoporating 1,5,9,13-tetrathiacyclohexadecane([16]-ane-$S_4$) with a conventional carbon-paste mixture composed of graphite powder and nujol oil. Ag(I) ion was chemically deposited onto the surface of the modified electrode with [16]-ane-$S_4$ by immersion of the electrode in the acetate buffer solution(pH=4.5) containing $5.0{\times}10^{-4}M$ Ag(I) ion. And then the electrode deposited with Ag(I) was reduced at -0.3V vs. S.C.E. Well-defined stripping voltammetric peaks could be obtained by scanning the potential to the positive direction. The CME surface was regenerated with exposure to 0.1M $HNO_3$ solution and was reused for the determination of Ag(I) ion. When deposition/measurement/regeneration cycles were 10 times, the response could be reproduced with relative standard deviation of 6.08%. In case of differential pulse stripping voltammetry, the calibration curve for Ag(I) was linear over the range of $5.0{\times}10^{-7}{\sim}1.5{\times}10^{-6}M$. And the detection limit was $2.0{\times}10^{-7}M$. Various ions such as Cd(II), Ni(II), Pb(II), Zn(II), Mn(II), Mg(II), EDTA, and oxalate(II) did not influence the determination of Ag(I) ion, except Cu(II) ion.

  • PDF

Anodic Stripping Voltammetric Determination of Iodide Ion with a Cinchonine-Copper(Ⅱ) Complex Modified Carbon Paste Electrode (Cinchonine-Copper(Ⅱ) 착물로 변성된 탄소반죽전극을 이용한 요오드 이온의 양극벗김전압전류법 정량)

  • Kwak, Myung Keun;Park, Deog Soo;Jeong, Euh Duck;Won, Mi Sook;Shim, Yoon Bo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.341-346
    • /
    • 1996
  • Electrochemical determination of iodide was carried out by stripping voltammetry with a $(Cin)Cu(NO_3)_2$ modified-carbon paste electrode. Iodide was coordinated onto the electrode surface containing $(Cin)Cu(NO_3)_2$ via ion exchange. The oxidation peak potential of incorporated iodide was +0.72 V. The optimum analytical conditions for the determination of iodide were investigated using linear sweep voltammetry. Optimum conditions for the electrochemical determination of iodide were as follows: i) A predeposition solution was 0.1 M $KNO_3.$ ii) The deposition time was 10 min. iii) The composition of the electrode was 40% (w/w). The detection limit for iodide was $1.0{\times}10^{-6}M$ and the relative standard deviation was ${\pm}5.5%\;in\;2.0{\times}10^{-5}M$(four repetitions). The interference effect of other anions were also investigated. $Cl^-,\;Br^-,\;C_2O_4^{2-},\;and\;ClO_4^-$ ions do not interfere for the determination of iodide. When $SCN^-$ was added to the deposition solution, the oxidation peak current of iodide ion was decreased roughly 32%.

  • PDF

Effect of performance in $TiO_2$ paste for Dye-Sensitized Solar Cells by $TiO_2$ nanofiber ($TiO_2$ 나노파이버를 첨가한 광전극용 $TiO_2$ 페이스트가 염료감응 태양전지의 광전변환 특성에 미치는 영향)

  • Baek, Hyoung-Youl;Li, Hu;Jin, En-Mei;Park, Kyung-Hee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.358-359
    • /
    • 2008
  • Solar cell based on dye-sensitized photoelectric conversion was studied by investigating the effects of the amount of $TiO_2$ nanofiber added to the $TiO_2$ paste, on surface morphology, good electric of the $TiO_2$ films and on the solar cell performance. Energy conversion efficiency was found to increased with $TiO_2$ nanofiber addition up to 7wt% in $TiO_2$ films. Maximum increase upto 15% in the efficiently was observed at 7 wt. % of $TiO_2$ nanofiber in $TiO_2$ electrode.

  • PDF

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.511-520
    • /
    • 2016
  • Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.

Comparison of Electrical Properties and AFM Images of DSSCs with Various Sintering Temperature of TiO2 Electrodes (TiO2 전극의 소결 온도에 따른 DSSCs의 전기적 특성 및 AFM 형상 비교)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Lee, Won-Jae;Koo, Bo-Kun;Song, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.571-575
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature$(350\;to\;550^{\circ}C)$. $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSSCs were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). Below sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively lower due to lower open circuit voltage. Oppositely, above sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively higher due to higher open circuit voltage. In both cases, lower fill factor (FF) was observed. However, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSSCs were mutually complementary, enhancing highest fill factor and efficiency. Such results can be explained in comparison of surface morphology with schematic diagram of energy states on the $TiO_2$ electrode surface. Consequently, it was considered that optimum sintering temperature of a-terpinol included $TiO_2$ paste is at $500^{\circ}C$.