• Title/Summary/Keyword: Passive stretch

Search Result 19, Processing Time 0.02 seconds

Response of masticatory muscles to passive stretch stimulus - from perspectives of functional appliances

  • Pae, Eung-Kwon
    • The korean journal of orthodontics
    • /
    • v.42 no.2
    • /
    • pp.64-72
    • /
    • 2012
  • Objective: The aims of this study were to examine whether a passive stretch stimulus by means of a functional appliance induces changes in the fiber composition of masticatory muscles and whether these changes are similar to the changes in stretched limb muscle fibers by using RT-PCR, western blot, and immunohistochemical assays. Methods: Five male New Zealand White rabbits were fitted with a prefabricated inclined plane on the maxillary central incisors to force the mandible forward (- 2 mm) and downward (- 4 mm). Further, 1 hind limb was extended and constrained with a cast so that the extensor digitorum longus (EDL) was stretched when the animal used the limb. The animals were sacrificed aft er 1 week and the masseter, lateral pterygoid, and EDL were processed and compared with those from control animals (n = 3). Results: The stretched EDL had a significantly higher percentage of slow fibers, whereas the stretched masticatory muscles did not show changes in the composition of the major contractile proteins aft er 7 days. Conclusions: The transition of fiber phenotypes in response to a stretch stimulus may take longer in the masticatory muscles than in the limb muscles.

Dynamic Threshold Model of Spasticity that Can Predict Various Pendulum Motions (다양한 진자운동을 재현가능한 경직의 동적 역치 모델)

  • Kim Chul-Seung;Kong Se-Jin;Kwon Sun-Duck;Kim Jong-Moon;Eom Gwang-Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.152-158
    • /
    • 2006
  • The objective of this work is to develop the knee joint model for representing various pendulum motions and quantifying the spasticity. Knee joint model included the extension and flexion muscles. The joint moment consists of both the active moment from the stretch reflex and the passive moment from the viscoelastic joint properties. The stretch reflex was modeled as nonlinear feedback of muscle length and the muscle lengthening velocity, which is Physiologically-feasible. Moreover, we modeled the spastic reflex as having dynamic threshold to account far the various pendulum trajectories of spastic patients. We determined the model parameters of three patients who showed different pendulum trajectories through minimization of error between experimental and simulated trajectories. The simulated joint trajectories closely matched with the experimental ones, which show the proposed model can predict pendulum motions of patients with different spastic severities. The predicted muscle force from spastic reflex appeared more frequently in the severe spastic patient, which indicates the dynamic threshold relaxes slowly in this patient as is manifested by the variation coefficient of dynamic threshold. The proposed method provides prediction of muscle force and intuitive and objective evaluation of spasticity and it is expected to be useful in quantitative assessment of spasticity.

A Review of tissue changes caused by joint immobilization and classification of contracture (관절고정에 의한 조직변화와 구축의 분류에 대한 고찰)

  • Yoon, Sang-Jib;Lee, Joon-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.727-734
    • /
    • 2001
  • Contracture is defined as the lack of full passive range of motion resulting from pint, muscle or soft tissue limitationprolonged Pint immobilization will result in stress and stretch deprivation and gradual development of contracture. the tissue changes caused by immobilization may be categorized as cellular modeling, ground substance and collagen response, and tissue response. contracture can be divided into three categories according to the anatomical location of pathological changes :arthrogenic, myogenic, soft tissue contractures Therapeutic approach of contracture is thermal or cold agents application, stretch or restoration of length, traction, manipulation, mobilization positioning and restoration of function. The purpose of this article is to review current concepts of mechanical properties and synthesis of collagen tissue and the underlying pathomechanics as it relates to evaluation and treatment of contracture.

  • PDF

Cardiovascular Responses over the Time Course during Muscle Group III Stimulation in Prehypertensive Individuals (고혈압 전단계자들에 대한 골격근 Group III 자극 시 시간에 따른 심혈관 반응)

  • Park, Won-Il;Park, Si-Young;Choi, Hyun-Min;Lee, Joon-Hee;Jeon, Jong-Mok;Kim, Jong-Kyung;Shim, Jae-Kun;Nho, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1568-1574
    • /
    • 2009
  • The purpose of this study was to investigate whether group III muscle afferents play an important role eliciting abnormal blood pressure response mediated during passive muscle stretch in prehypertensive individuals. Eleven middle-aged prehypertensive men (average BP 133/80 mmHg) and nine middle-aged normotensive men (average BP 119/74 mmHg) participated in this study. After 1 min rest baseline data collection, the subject's foot was flexed (dorsiflexion) by an automated cybex for one minute. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), heart rate, stroke volume, cardiac output, and total peripheral resistance were continuously measured on a beat-by-beat basis from a finger via a Finapres device for 1 minute. To evaluate the role of mechanoreflex, a component of exercise pressor reflex, SBP, DBP, and MAP responses over the course of time were examined. The results showed that the pressor response mediated by the muscle mechanoreflex was faster in prehypertensive individuals compared to the normotensive individuals. The substantial pressor response was observed within mean 20 sec of the onset of passive stretch in prehypertension, while mean 45 sec in normotension (p<0.05). It is concluded that excessive pressor response produced during exercise in prehypertension may be due to the dysfunction of the mechano-receptors.

Transient Receptor Potential C4/5 Like Channel Is Involved in Stretch-Induced Spontaneous Uterine Contraction of Pregnant Rat

  • Chung, Seungsoo;Kim, Young-Hwan;Joeng, Ji-Hyun;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.503-508
    • /
    • 2014
  • Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by $1{\mu}M$ lanthanides (a potent TRPC4/5 stimulator) and suppressed by $10{\mu}M$ 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide ($1{\mu}M$) and suppressed by 2-APB ($10{\mu}M$), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.

Research Findings and Implications for Physical Therapy of Spasticity (강직의 최선 지견과 물리치료와의 관련성)

  • Kim, Jong-Man;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.2 no.2
    • /
    • pp.73-84
    • /
    • 1995
  • Spasticity has been defined as a motor disorder characterised by a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks resulting in hyperexcitability of the stretch reflexes as one component of the upper motor neuron syndrome. Weakness and loss of dexterity, however, are considered to be more disabling to the patient than changes in muscle tone. The discussion includes the important role that alterations in the physiology of motor units, notably changes in firing rates and muscle fiber atrophy, play in the manifestation of muscle weakness. This paper considers both the neural and mechanical components of spasticity and discusses, in terms of clinical intervention, the implications arising from recent research. Investigations suggest that the resistance to passive movement in individuals with spasticity is due not only to neural mechanisms but also to changes in mechanical properties of muscle. The emphasis is on training the individual to gain control over the muscles required for different tasks, and on preventing secondary and adaptive soft tissue changes and ineffective adaptive motor behaviours.

  • PDF

Combined Effects of Gastrocnemius Stretch and Tibialis Anterior Resistance Exercise in Subjects with Limited Ankle Dorsiflexion

  • Lee, Jihyun;Cynn, Heonseock;Shin, Areum;Kim, Bobeen
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.1
    • /
    • pp.10-15
    • /
    • 2021
  • Objective: Limited ankle dorsiflexion is related to ankle injuries. There are various exercises to increase the flexibility of the gastrocnemius for improving the passive range of motion in ankle dorsiflexion. However, to performances in daily activities and athletic sports and higher efficiency of walking and running, both ankle dorsiflexion passive and active range of motion are needed. To investigate the effects of combined gastrocnemius stretching and tibialis anterior resistance exercise on ankle kinematics (passive and active range of motion of ankle dorsiflexion) and tibialis anterior muscle activity in subjects with limited ankle dorsiflexion. Design: Cross-sectional single-group repeated measures design. Methods: Fourteen subjects with limited ankle dorsiflexion were recruited (in the right ankle in 7 and the left ankle in 7). All subjects performed gastrocnemius stretching alone and tibialis anterior resistance exercise after gastrocnemius stretching. The passive and active range of motion of ankle dorsiflexion were measured after interventions immediately. The tibialis anterior activity was measured during active range of motion of ankle dorsiflexion measurement. Results: There was no significant difference of ankle dorsiflexion passive range of motion between gastrocnemius stretching alone and the tibialis anterior resistance exercise after gastrocnemius stretching. The tibialis anterior resistance exercise after gastrocnemius stretching significantly increased active range of motion of ankle dorsiflexion compared to gastrocnemius stretching alone (p<0.05). The tibialis anterior resistance exercise after gastrocnemius stretching significantly increased tibialis anterior activity better than did gastrocnemius stretching alone. Conclusions: Thus, subjects with limited ankle dorsiflexion should be encouraged to perform tibialis anterior resistance exercises.

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF

Effects of Proprioceptive Neuromuscular Facilitation Relaxation Techniques on Hamstring Flexibility and Vertical Jump Performance (고유수용성신경근촉진법 이완기법이 뒤넙다리근 유연성과 점프수행력에 미치는 영향)

  • Lim, Jae-Heon;Lee, Min-Kook;Park, Jong-Hyuk;Jung, Tae-Ho;Jo, Eun-Bi
    • PNF and Movement
    • /
    • v.13 no.3
    • /
    • pp.135-143
    • /
    • 2015
  • Purpose: The purpose of this study was to assess the effect of the proprioceptive neuromuscular facilitation (PNF) relaxation technique (hold relax; HR, contract relax; CR) and static stretch (SS) on hamstring flexibility and vertical jump performance in healthy adults over a four-week period. Methods: Twenty-four healthy adults volunteered to participate in PNF and static stretch sessions. The subjects were divided into three groups as follows: 8 subjects in the SS group, 8 subjects in the HR group, and 8 subjects in the CR group. In the HR and CR groups, contractions lasted 15 seconds per trial and consisted of 5 sets of 15 seconds of hamstring contraction immediately followed by 15 seconds of passive static hamstring stretching. For the static group, the participants were asked to stretch by hanging a leg over a table for 30 seconds. Subjects in all groups performed the exercises three days per week for 4 weeks. The active straight leg raising (ASLR) test, active knee extension (AKE) test, and vertical jump test were performed before the intervention and after 1, 2, and 4 weeks. Results: The SS, HR, and CR techniques effected positive improvement in hamstring flexibility and vertical jump performances but neither of the stretching methods had any statistically significant different effects according to group, although there were interactions (between group and time) in the ALSR group from 1 week to 2 week and in the AKE test from pretest to 1 week. Conclusion: Based on the results of the current study, SS, HR, and CR were shown to affect hamstring flexibility and vertical jump performance in healthy adults. In particular, it was determined that within a short period, hamstring flexibility could be attributed more to CR than to SS.

Effect of Prior Muscle Contraction or Passive Stretching on Eccentric-Induced Muscle Damage

  • Choi, Seung-Jun
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.487-497
    • /
    • 2019
  • Purpose: This tutorial review investigated the effect of prior fatigue and passive stretches on eccentric contraction-induced muscle injuries, as well as the underlying mechanisms of eccentric contraction-related injuries. Methods: Contraction-induced muscle damage is the most common disabling problem in sports and routines. The mechanisms underlying the pathology and prevention of muscle damage lessened by prior fatigue or stretches are critical in assessing musculoskeletal injuries. Even though there are treatments to reduce eccentric contraction-induced muscle injuries, fatigue negatively influences them. Therefore, we reviewed previous studies on eccentric contraction-induced muscle injuries with prior treatments using the MEDLINE and PubMed databases. Results: Prior passive stretching had a preventative and therapeutic effect, but prior lengthening contractions did not. On the other hand, prior isometric contractions involving relatively small forces may not provide a sufficient stimulus to induce protection. As a result, high force isometric contractions may be necessary. The studies supported the positive effects of prior fatigue, concluding that it was a factor in determining the amount of damage caused by eccentric exercise. This was due to a reduction in force and increased temperature. Studies that did not support the positive effects of prior fatigue concluded that a shift in optimal length to a longer length and reduced energy absorption during lengthening are evidence that fatigue is not related to muscle injuries induced by lengthening. Conclusion: The variability of the experiment models, conditions, muscles, and treatment methods make it necessary to interpret the conditions of previous studies carefully and draw conclusions without making direct comparisons. Thus, additional studies should be carefully conducted to investigate the positive effect of fatigue on lengthening.