• Title/Summary/Keyword: Passive design method

Search Result 373, Processing Time 0.03 seconds

Design of Device for Rotator Cuff Training and Its Experimental Validation with sEMG (회전근개 훈련용 기기 설계와 sEMG를 활용한 실험적 검증)

  • Byun, Sangkyu;Kim, Jaehoon;Chung, Jiyong;Kim, Heeyoung;Shin, Sungwook;Lee, Eunghyuk
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1035-1043
    • /
    • 2021
  • The shoulder is less stable than other joints, making it easier to onset of various shoulder disorders. In addition, limited range of motion and pain in the shoulder due to shoulder disorders restricts daily life and social activities. The problem with exercise therapy can be reduced in exercise effect by causing boredom through simple repetition of motion, thus reducing the patient's willingness to participate. Therefore, this paper aims to provide a treatment method that can induce active participation of patients by developing devices capable of passive, active, and resistance exercise and serious game contents using them. Furthermore, sEMG was used to verify whether the rotational exercise in the horizontal and vertical using serious game contents helps the shoulder movement actually. The measured sEMG signal was classified as 5 phases according to the angle of rotation and calculated the mean integrated EMG. The mean integrated EMG for the experimental results was higher in all phases when rotational was performed compared to those when both horizontal and vertical rotational exercise remained initial posture, indicating an increase in muscle activity.

Immediate Effect of Hip Hinge Exercise Stretching on Flexibility of Lower Limb, Pelvic Tilting Angle, Proprioception and Dynamic Balance in Individual with Hamstring Tightness

  • Jung, Myeongeun;Kim, Namwoo;Lee, Yongwoo
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.259-268
    • /
    • 2022
  • Objective: The purpose of this study was to measure the immediate effect of hip hinge exercise stretching on hamstring flexibility, pelvic tilting angle, proprioception, and dynamic balance in individual with tightness of the hamstring. Design: A randomized controlled trial. Methods: A total of 35 healthy young adults (27 males, 8 females) volunteered for this study and randomly divided into three groups (Hip hinge exercise stretching group, passive stretching group, and PNF stretching group). The hamstring flexibility, pelvic tilting angle, knee joint proprioception, dynamic balance was conducted for 3 times. In order to evaluate the hamstring flexibility, the active knee extension test was performed. Forward bending test was performed to examine pelvic tilting angle.The proprioception was tested by the joint position sense test and dynamic balance was evaluated by Y balance test. Results: The hamstring flexibility, pelvic tilting angle and dynamic balance were significantly improved between three groups before and after intervention (p<0.05). Dynamic balance was significantly difference between the three groups in the posterolateral direction (p<0.05). Conclusions: This study result showed that hip hinge exercise stretching was the most effective method for increasing hamstring flexibility, pelvic tilting angle and dynamic balance. In addition, it is necessary to study whether hamstring stretching is effective in low back pain patient with hamstrings tightness.

Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel

  • Wang, Hongtao;Li, Shucai;Wang, Qi;Wang, Dechao;Li, Weiteng;Liu, Ping;Li, Xiaojing;Chen, Yunjuan
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2019
  • Pre-tensioned rock bolts can be classified into fully anchored, lengthening anchored and point anchored bolts based on the bond length of the resin or cement mortar inside the borehole. Bolts in varying anchoring methods may significantly affect the supporting effect of surrounding rock around a tunnel. However, thus far, the theoretical basis of selecting a proper anchoring method has not been thoroughly investigated. Based on this problem, 16 schemes were designed while incorporating the effects of anchoring length, pretension, bolt length, and spacing, and a systematic numerical experiment was performed in this paper. The distribution characteristics of the stress field in the surrounding rock, which corresponded to various anchoring scenarios, were obtained. Furthermore, an analytical approach for computing the active and passive strengthening index of the anchored surrounding rock is presented. A new fully anchoring method with pretension and matching technology are also provided. Then, an isolated loading model of the anchored surrounding rock was constructed. The physical simulation test for the bearing capacity of the model was performed with three schemes. Finally, the strengthening mechanism of varying anchoring methods was validated. The research findings in this paper may provide theoretical guidelines for the design and construction of bolting support in tunnels.

Shallow Shear-wave Velocities Using the Microtremor Survey Method (상시미동 측정을 통한 천부 횡파속도 연구)

  • Hwang, Yoon-Gu;Kim, Ki-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.381-392
    • /
    • 2006
  • The passive surface wave survey using microtremor is conducted in areas of crystalline rock basements to obtain average shear-wave velocity structures to 30 m deep (Vs30), on which the earthquake-resistant design standard is based. Test data were recorded at two sites with triangular and L-shaped arrays for 4 seconds with an sampling interval of 2 ms. The microtremor recorded at a site were analysed using the spatial autocorrelation method to obtain phase-velocity spectra and effects of major factors such as size and shape of away and number of record and receiver were examined. At the other site, shear-wave velocities were derived from VSP and microtremor data separately. The results from these two methods agree to each other reasonably well, indicating that the microtremor method can be an effective geophysical tool to measure Vs30.

Short-term effects of joint mobilization with versus without voluntary movement in patients with chronic ankle instability: A single-blind randomized controlled trial

  • Kim, Hyunjoong;Song, Seonghyeok;Lee, Sangbong;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Objective: Joint mobilization for arthrokinematics altered by the positional fault of chronic ankle instability (CAI) is an effective intervention for stabilization. In this study, we compared the effects of ankle dorsi flexion range of motion (DFROM) and dynamic balance ability (DBA) in CAI patients via passive joint mobilization (PJM), a method traditionally performed in previous studies, and active joint mobilization (AJM), a method that can have a greater effect on cortical excitability with spontaneous movements. Design: Single-blind two-arm randomized controlled trial Methods: A total of 30 participants were registered: 15 each to the PJM and AJM groups. Each participant received a total of 10 intervention sessions, 10 minutes per session, 5 times a week for 2 weeks. PJM used Maitland's mobilization method to apply joint mobilization with talus in the posterior direction and AJM used an angular joint motion to induce patient's voluntary motion of medial malleolus anterior gliding and lateral malleolus posterior gliding, respectively. DFROM of the ankle was measured by using tape and DBA was evaluated by using the balance system. Results: Significant improvement was observed after intervention in both the PJM and AJM groups except for the DBA-anterior and DBA-right variables of the PJM group. There were statistically significant differences between the AJM and PJM groups in the DFROM, DBA-anterior, DBA-posterior, and DBA-right variables. Conclusions: The overall improvement of DFROM and DBA was found to be more effective in joint mobilization including voluntary movement. When it is accompanied by voluntary movement, it further affects the neuromuscular system of the ankle.

A Channel Allocation Protocol for Collision Avoidance between Reader in 2.4GHz Multiple Channel Active RFID System (2.4GHz 다중채널 능동형RFID시스템에서 리더간 충돌회피를 위한 채널 할당 프로토콜)

  • Kim, Dong-Hyun;Lee, Chae-Suk;Kim, Jong-deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.139-142
    • /
    • 2009
  • RFID(Radio Frequency IDentification) technology is an automatic identification method using radio frequencies between RFID reader which collects the information and tag which transmits the information. RFID technology develops passive RFID which transmit the only ID to active RFID which transmit the additional information such as sensing information. However, ISO/IEC 18000-7 as active RFID standard has a problem which cannot use multiple channel. To solve this problem, we use the 2.4GHz bandwidth technology and we propose the dynamic channel allocation method which can efficiently allot a channel. we show the operation of the dynamic channel allocation method through design and implement with CC2500DK of Taxas Instrument.

  • PDF

Design and performance evaluation of deep learning-based unmanned medical systems for rehabilitation medical assistance (재활 의료 보조를 위한 딥러닝 기반 무인 의료 시스템의 설계 및 성능평가)

  • Choi, Donggyu;Jang, Jongwook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1949-1955
    • /
    • 2021
  • With the recent COVID-19 situation, countries are seriously feeling the need for medical personnel and their technologies. PDepending on the aging society, the number of medical staff is actually decreasing, and in order to solve this problem, research is needed to replace the part that does not require high expertise among actual medical practices performed by doctors. This paper describes and proposes actual research methods related to unmanned medical systems that use various deep learning image processing-based technologies to check the recovery status applicable to rehabilitation areas where medical staff should face patients directly. The proposed method replaces passive calculations such as a protractor or a method of drawing a line in a photograph, which is the method used for actual motion comparison. Since it is performed in real time, it helps to diagnose quickly, and it is easy for medical staff to provide necessary information because data on the degree of match of motion performance can be checked.

Analysis of Urban Park Nightscape based on the Design-Construction Process and Current Status - Focused on Yeouido Park - (도시공원 야간경관의 조성 과정과 실태 분석 - 여의도공원을 중심으로 -)

  • Kim, Hyun-Geun;Kim, Ah-Yeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.14-26
    • /
    • 2018
  • Light has been an essential part of human life. The advancement of technology has changed cities' nightscape and night activities in a drastic way. Lighting has influenced the identity of a city while promoting a variety of civic nighttime cultural pursuits, yet lighting design has not been considered adequately in the field of landscape architecture. This study aims to analyze the current status of lighting in urban parks through interviews with professionals, literature and regulation reviews, analysis of design documents and a field survey focused on Yeouido Park in Seoul. The findings and improvement directions are as follows. First, it is necessary to develop a specific lighting design method in order to avoid a marginalized, passive approach such as light fixture installation. Second, the existing standards of illuminance by KS A 3011 regulating only horizontal illuminance has turned out not to evaluate the current nightscape of urban parks properly. Therefore the criteria and guideline for analysis and design for nightscape should be articulated. Third, there are no design or management strategies to consider the changing landscape of urban parks, which is necessary due to the changing characteristics of park ecosystems. Lastly, detailed guidelines for distinguished spaces in urban parks should be studied and suggested.

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.