• Title/Summary/Keyword: Passive array

Search Result 120, Processing Time 0.022 seconds

Evaluation on Structure Design Sensitivity and Meta-modeling of Passive Type DSF for Offshore Plant Float-over Installation Based on Orthogonal Array Experimental Method (직교배열실험 방법 기반 해양플랜트 플로트오버 설치 공법용 수동형 DSF의 구조설계 민감도와 메타모델링 평가)

  • Lee, Dong-Jun;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.85-95
    • /
    • 2021
  • Structure design sensitivity was evaluated using the orthogonal array experimental method for passive-type deck support frame (DSF) developed for float-over installation of the offshore plant. Moreover, approximation characteristics were also reviewed based on various meta-models. The minimum weight design of the DSF is significantly important for securing both maneuvering performance and buoyancy of a ship equipped with the DSF and guaranteeing structural design safety. The performance strength of the passive type DSF was evaluated through structure analysis based on the finite element method. The thickness of main structure members was applied to design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experimental method and analysis of variance. The optimum design case was also identified from the orthogonal array experiment results. Various meta-models, such as Chebyshev orthogonal polynomial, Kriging, response surface method, and radial basis function-based neural network, were generated from the orthogonal array experiment results. The results of the orthogonal array experiment were validated using the meta-modeling results. It was found that the radial basis function-based neural network among the meta-models could approximate the design space of the passive type DSF with the highest accuracy.

Performance Analysis of a Criterion to Verify the Consistency of Measured Angles of Towed Array and Frank Array (예인 선 배열 소나와 선측 배열 소나의 방위각 측정값의 일관성 판별기법의 성능분석)

  • Park, Hyun-Woo;Jung, Tae-Jin;Kwon, Bum-Soo;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Unlike using a single sonar platform, using two different sonar platforms can lead to a considerable increase of acoustic aperture in Passive Ranging Sonar(PRS). Values measured from two sonar platforms shall be consistent in order to allow us to rely on such improved aperture. However, obtaining consistent values from a towed array and a frank array is not always simple due to the heading error occurring at towed array. The objective of this paper is to verify a new criterion analyzing the consistency in the measured values of towed array and frank array through computer simulations.

Study on Bearing and Frequency Target Motion Analysis for Passive Line Array SONAR Using Accumulative Batch Estimation (누적 일괄추정 기법을 이용한 수동 선배열 소나 방위 주파수 - 표적기동분석 연구)

  • Kim, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.788-796
    • /
    • 2016
  • Bearing and frequency measurements of TMA (Target Motion Analysis) in passive line array SONAR have lower bearing rate and frequency doppler, and are not detected or tracked continuously because of various ocean environments. This is a main reason to effect the TMA performance and it takes a long time to get TMA solutions. We propose the bearing and frequency TMA(BFTMA) using accumulative batch estimation to solve the TMA problem of line array passive SONAR. The accumulative batch estimation structure is based on MLE (Maximum Likelihood Estimation) but used accumulative measurements. The accumulative batch estimation is applied for the BFTMA with nonlinear Kalman filter to estimate the target range, speed and course. Simulation and sea data analysis were carried out to verify the performance and applicability of the proposed techniques.

Performance Analysis of Data Association Applied Frequency Weighting in 3-Passive Linear Array Sonars (주파수 가중치를 적용한 3조의 수동 선배열 소나 센서의 정보 연관 성능 분석)

  • 구본화;윤제한;홍우영;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • This paper deals with data association using 3 sets of passive linear array sonars (PUS) geometrically positioned in a Y-shaped configuration, but fixed in an underwater environment. The data association problem is directly transformed into a 3-D assignment problem, which is known to be NP-hard. For generic passive sensors, it can be sotted using conventional algorithms, while it in PLAS becomes a formidable task due to the presence of bearing ambiguity. In particular, we proposed data association method robust to bearing measurements errors by incorporating frequency information and analyze a region of ghost problem by geometrical relation PUS and target. We analyzed the effectiveness of the proposed method by representative simulation in multi-target.

Position error estimation of sub-array in passive ranging sonar based on a genetic algorithm (유전자 알고리즘 기반의 수동측거소나 부배열 위치오차 추정)

  • Eom, Min-Jeong;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol;Oh, Se-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.630-636
    • /
    • 2019
  • Passive Ranging Sonar (PRS) is a type of passive sonar consisting of three sub-array on the port and starboard, and has a characteristic of detecting a target and calculating a bearing and a distance. The bearing and distance calculation requires physical sub-array position information, and the bearing and distance accuracy performance are deteriorated when the position information of the sub-array is inaccurate. In particular, it has a greater impact on distance accuracy performance using plus value of two time-delay than a bearing using average value of two time-delay. In order to improve this, a study on sub-array position error estimation and error compensation is needed. In this paper, We estimate the sub-array position error based on enetic algorithm, an optimization search technique, and propose a method to improve the performance of distance accuracy by compensating the time delay error caused by the position error. In addition, we will verify the proposed algorithm and its performance using the sea-going data.

Performance Analysis of Omni-Directional Automatic Target Detection and Tracking for a Towed Array Passive Sonar System (예인형 수동소나에 적합한 전방위 표적 자동탐지 및 추적기법 성능 분석)

  • Seo, Ik-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.33-40
    • /
    • 2006
  • In towed array passive sonar system, sonar operators cannot detect and track the all targets simultaneously in the omni-directional area by just Operator Initiated Tracking(OIT). In this paper, omni-directional automatic target detection and tracking algorithm is described and optimize the parameters through ocean data to overcome the drawbacks of OITs. The algorithm is verified through sea trials with submarines.

Design of a Step Motor with a Passive Magnetic Bearing (수동형 마그네틱 베어링이 결합된 스텝 모터의 설계)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1201-1207
    • /
    • 2006
  • This paper introduces a step motor with a passively levitated rotor which comprises a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the active magnetic bearing technology, the proposed motor has a very simple structure and operating principle. For the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. Halbach array is used to increase the bearing stiffness. On the other hand, its rotation principle is just the same with that of conventional motors. In this paper, we introduce the design scheme to avoid the flux interference possibly produced by electromagnets and permanent magnets, and show some results of FEM analysis to predict the performance of the proposed motor.

Distance Extraction by Means of Photon-Counting Passive Sensing Combined with Integral Imaging

  • Yeom, Seok-Won;Woo, Yong-Hyen;Baek, Won-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.357-361
    • /
    • 2011
  • Photon-counting sensing is a widely used technique for low-light-level imaging applications. This paper proposes a distance information extraction method with photon-counting passive sensing under low-lightlevel conditions. The photo-counting passive sensing combined with integral imaging generates a photon-limited elemental image array. Maximum-likelihood estimation (MLE) is used to reconstruct the photon-limited image at certain depth levels. The distance information is extracted at the depth level that minimizes the sum of the standard deviation of the corresponding photo-events in the elemental image array. Experimental and simulation results confirm that the proposed method can extract the distance information of the object under low-light-level conditions.

Development of phase shifter for Ka-band Passive Phase Array Seeker and Seeker Performance Analysis due to the Phase Error of Phase Shifter (Ka-대역 수동위상배열탐색기용 위상 변위기 개발 및 변위기 위상 오차에 의한 탐색기 성능 분석)

  • Kim, Youngwan;Woo, Seon-keol;Kwon, Jun-beom;Kang, Yeon-duk;Park, Jongkuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2019
  • In this paper, phase shifter has been designed and manufactured to apply to passive phase array seeker for Ka-band and its performance was confirmed. It was designed as a key element for conducting electric beam steering by adjusting the phase of the array element. Insertion loss of less than 1.5dB and phase accuracy of less than $10^{\circ}$(RMS) in operation bandwidth of 1GHz were checked. The performance identified by the actual fabrication was further analyzed by applying the beam pattern analysis based on the array synthesis theory. The effect of the final performamnce of the proven phase shifter on the performance and pointing error and angular accuracy of the passive phase array antenna beam pattern was analyzed. Then, the validation of the proposed phase shifter has been made.

Comparison of independent component analysis algorithms for low-frequency interference of passive line array sonars (수동 선배열 소나의 저주파 간섭 신호에 대한 독립성분분석 알고리즘 비교)

  • Kim, Juho;Ashraf, Hina;Lee, Chong-Hyun;Cheong, Myoung Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, we proposed an application method of ICA (Independent Component Analysis) to passive line array sonar to separate interferences from target signals in low frequency band and compared performance of three conventional ICA algorithms. Since the low frequency signals are received through larger bearing angles than other frequency bands, neighboring beam signals can be used to perform ICA as measurement signals of the ICA. We use three ICA algorithms such as Fast ICA, NNMF (Non-negative Matrix Factorization) and JADE (Joint Approximation Diagonalization of Eigen-matrices). Through experiments on real data obtained from passive line array sonar, it is verified that the interference can be separable from target signals by the suggested method and the JADE algorithm shows the best separation performance among the three algorithms.