• 제목/요약/키워드: Passive Solar System

검색결과 92건 처리시간 0.022초

A Study of Zero Energy Building Verification with Measuring and Model-based Simulation in Exhibition Building

  • Ha, Ju-wan;Park, Kyung-soon;Kim, Hwan-yong;Song, Young-hak
    • Architectural research
    • /
    • 제20권3호
    • /
    • pp.93-102
    • /
    • 2018
  • With the change in Earth's ecosystems due to climate change, a number of studies on zero energy buildings have been conducted globally, due to the depletion of energy and resources. However, most studies have concentrated on residential and office buildings and the performance predictions were made only in the design phase. This study verifies the zero-energy performance in the operational phase by acquiring and analyzing data after the completion of an exhibition building. This building was a retention building, in which a renewable energy system using a passive house building envelope, solar photovoltaic power generation panels, as well as fuel cells were adopted to minimize the maintenance cost for future energy-zero operations. In addition, the energy performance of the building was predicted through prior simulations, and this was compared with actual measured values to evaluate the energy performance of the actual operational records quantitatively. The energy independence rate during the measurement period of the target building was 123% and the carbon reduction due to the energy production on the site was 408.07 tons. The carbon reduction exceeded the carbon emission (331.5 tons), which verified the carbon zero and zero-energy performances.

지속가능한 생태도시 및 생태마을에서의 거주자의 역할 (The Role of Residents for the Sustainable Ecopolis and Ecovillage)

  • 곽인숙
    • 대한가정학회지
    • /
    • 제39권6호
    • /
    • pp.109-122
    • /
    • 2001
  • This study was performed to identify the roles of residents for the environmentally sound and sustainable development, taco-polis(kologisches Bauen), eco-village and Symbiotic Housing. These buildings will achieve energy efficiency through design strategies such as passive solar heating system, natural cooling and day lighting. Their infrastructure will feature parking on the periphery, extensive pedestrian paths, outdoor ground lights that preserve stellar visibility, and environmentally sensitive technologies such as low writer use fixtures. And they will restore biodiversity while protecting the wildlife, wetlands, forests, soil, air and water. Their houses wile be designed to support home-based occupations, offering high-speed Internet access and other options to promote a localized, sustainable economy. To support and encourage the evolution of sustainable settlements, it is necessary to prepare constructing the physical facilities and the social functions relating with residents. The roles of residents are important to provide a high Quality lifestyle and to integrate a supportive social environment with a low-impact way of life. This study concluded the four main roles of residents for the sustainable of Eco-polis and Ecovillage. 1. Residents assist transition towards a sustainable society as eco-conscious consumers in the planning stage. 2. Residents live in a ecological way for the sustainable ecovillage. 3. Residents exchange information and education for increasing the community glue as a communication network. 4. Residents support and transmit their cultural vitality and tradition for the next generation. So, users are expected to encourage resident's participation in the planning, design, ongoing management and maintenance of the sustainable ecovillage.

  • PDF

35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가 (Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System)

  • 박병준;정세용;한상철;한상진;이대화;한영희
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구 (A study on the Optimum Design Configuration of Passive Solar TI-wall system)

  • 김병수;윤종호;윤용진;백남춘
    • KIEAE Journal
    • /
    • 제3권2호
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계 (The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation)

  • 김승민;양승대;최주엽;최익;이영권
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

Toward residential building energy conservation through the Trombe wall and ammonia ground source heat pump retrofit options, applying eQuest model

  • Ataei, Abtin;Dehghani, Mohammad Javad
    • Advances in Energy Research
    • /
    • 제4권2호
    • /
    • pp.107-120
    • /
    • 2016
  • The aim of this research is to apply the eQuest model to investigate the energy conservation in a multifamily building located in Dayton, Ohio by using a Trombe wall and an ammonia ground source heat pump (R-717 GSHP). Integration of the Trombe wall into the building is the first retrofitting measure in this study. Trombe wall as a passive solar system, has a simple structure which may reduce the heating demand of buildings significantly. Utilization of ground source heat pump is an effective approach where conventional air source heat pump doesn't have an efficient performance, especially in cold climates. Furthermore, the type of refrigerant in the heat pumps has a substantial effect on energy efficiency. Natural refrigerant, ammonia (R-717), which has a high performance and no negative impacts on the environment, could be the best choice for using in heat pumps. After implementing the eQUEST model in the said multifamily building, the total annual energy consumption with a conventional R-717 air-source-heat-pump (ASHP) system was estimated as the baseline model. The baseline model results were compared to those of the following scenarios: using R-717 GSHP, R410a GSHP and integration of the Trombe wall into the building. The Results specified that, compared to the baseline model, applying the R-717 GSHP and Trombe wall, led to 20% and 9% of energy conservation in the building, respectively. In addition, it was noticed that by using R-410a instead of R-717 in the GSHP, the energy demand increased by 14%.

태양전지판의 수동형 제진을 위한 초탄성 형상기억합금 기반 적층형 고댐핑 요크 구조의 궤도상 열적 특성 분석 (On-orbit Thermal Characteristic for Multilayered High Damping Yoke Structure Based on Superelastic Shape Memory Alloy for Passive Vibration Control of Solar Panels)

  • 손민영;박재현;채봉건;박성우;오현웅
    • 항공우주시스템공학회지
    • /
    • 제18권1호
    • /
    • pp.1-10
    • /
    • 2024
  • 선행연구에서는 위성체의 고기동 시 전개형 태양전지판으로부터 발생하는 잔여진동을 저감시키기 위해 초탄성 형상기억합금 (Shape Memory Alloy, SMA)을 적용한 적층형 태양전지판 요크를 제안하였다. 요크에는 SMA 양면에 구속층을 적층시키기 위해 점탄성 테이프가 적용되며, 점탄성 테이프는 온도 의존성이 높아 온도에 따라 댐핑 특성 변화로 요크의 진동저감 성능에 직접적인 영향을 미친다. 이에 따라, 온도별 요크의 댐핑 성능을 확인하기 위해 다양한 온도조건에서 자유감쇠시험을 수행하여 댐핑 성능이 가장 극대화되는 온도 구간을 식별하였다. 본 논문에서는 상기 온도시험 결과를 토대로, 요크가 궤도 열환경에 노출되더라도 효과적인 댐핑 성능을 유지할 수 있도록 궤도 열해석을 통해 요크의 열적 거동 및 온도를 예측하였으며, 요크가 최적의 진동저감 성능을 낼 수 있도록 열 설계안 도출 방안에 관해 기술하였다.

온도 변색 도료의 지붕 적용 및 냉방효과 분석 (Analysis on the Cooling Effect of Applying Temperature Discoloration Paint to a Roof Surface)

  • 백상훈
    • 토지주택연구
    • /
    • 제13권4호
    • /
    • pp.115-123
    • /
    • 2022
  • 본 연구는 지붕 표면에 온도 변색 도료(Thermochromic paint) 적용에 따른 지붕 표면 온도 저감 및 실내 냉방 효과를 분석하는 것에 목적이 있다. 본 도료는 특정 온도에서 색상이 변화되는 특징을 갖는다. 만약 본 도료를 적용함으로서 지붕 표면이 여름철에는 흰색으로, 겨울철에는 검정색으로 계절에 따라 변화될 수 있다면, 여름철에는 일사를 반사하여 실내 냉방 효과를 발휘할 수 있고, 겨울철에는 일사를 흡수하여 난방 효과를 가져올 수 있다. 이 중, 본 논문에서는 본 도료에 의해 여름철에 지붕의 표면 온도와 실내 온도가 어느 정도 감소되는지에 대해 실증 실험 및 기존 도료와의 비교를 통해 그 성능을 확인하였다. 그 결과, 온도 변색 도료가 적용된 지붕의 표면온도는 기존 도료의 경우보다 대략 5~10℃ 정도 낮게 나타났으며, 이로 인해, 실내 기온 또한 기존보다 대략 3℃ 이상 낮게 분석되었다. 따라서 온도 변색 도료는 여름철 높은 표면 온도를 유지하는 지붕에 적용 될 시, 표면 온도를 크게 감소시켜 실내 냉방효과를 발휘할 수 있는 것으로 확인되었다.

와전류 감쇠기를 적용한 평판의 진동 저감에 관한 실험적 연구 (A Experimental Study on Vibration Attenuation of a Plate with Eddy Current Damper)

  • 편봉도;김종혁;배재성;황재혁
    • 한국항공우주학회지
    • /
    • 제48권5호
    • /
    • pp.355-361
    • /
    • 2020
  • 인공위성 중 군사적 성격을 띠는 저궤도 소형 인공위성의 경우 다표적 관측을 필요로 하고 고해상도의 사진 및 영상의 수요가 증가하는 추세이다. 고해상도 영상과 다표적 관측을 위해 인공위성의 기동성이 가장 큰 변수로 작용한다. 소형 인공위성의 경우 고기동성을 갖게 되면 빠르게 자세기동을 할 수 있지만 자세 기동을 완료 후 다음 자세 기동을 할 때 잔류진동이 발생하게 된다. 이에 본 연구에서 자세 기동 후 발생하는 평판의 진동 특성을 검증하기 위하여 자세기동을 모사하기 위한 실험 치구를 제작하고 실험을 수행하였다. 추가로 이러한 진동을 저감시키기 위해 영구자석을 이용한 수동형 감쇠방법으로 와전류 브레이크 시스템을 응용한 와전류 감쇠기를 제시하였다. 와전류 감쇠기를 적용하기 위하여 수학적 모델을 정립하였으며 영구자석의 자속밀도와 공극거리에 따라 이를 실험적으로 구현하였으며, 4개의 태양전지판(평판) 중 1개 평판을 특정하여 와전류감쇠기를 적용유무에 따라 자세 기동 후 발생하는 잔류진동에 대한 저감 성능을 실험적으로 검증하였다.

동절기 이중외피 시스템에 적용 가능한 PCM재료의 온도설정에 따른 실내 열 성능 분석에 관한 연구 (Study on Indoor Thermal Performance Analysis upon PCM Temperature applicable to the Double Skin Facade System in the Winter)

  • 류리;서장후;김용성
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.43-48
    • /
    • 2015
  • Purpose: Recently, many countries around the world are actively looking for the ways to make full use of natural energy sources and also develop and apply an environmentally friendly system designed to save building energy consumption. Under these circumstances, this study intended to determine the applicability and energy saving effect by deriving the indoor thermal performance characteristics and the PCM temperature appropriate for a double skin façade to reduce indoor energy consumption through the application of different PCM temperatures to double skin façade and perform a performance evaluation depending on the application or non-application of PCM to a double skin façade. Method: For this study, the physical variables of the double skin façade with PCM were configured through a preliminary examination based on an experimental measurement, and experimental measurements were taken with a total of 7 types of mockup cases: Type-1 (Basic), the basic double skin façade, Type-2 (PCM $18^{\circ}C$) which was applied to the inner skin of the double skin façade depending on the phase-change temperature of PCM, Type-3 (PCM $20^{\circ}C$), Type-4 (PCM $22^{\circ}C$), Type-5 (PCM $24^{\circ}C$), Type-6 (PCM $26^{\circ}C$), and Type-7 (PCM $28^{\circ}C$) with reference to the data analysis of the basic double skin façade which preceded this study, to analyze the indoor thermal performance of the double skin façade depending on PCM temperature and the installation or non-installation of a double skin façade applying PCM based on the selected unit space. Result: Indoor thermal performance was analyzed depending on the PCM temperature applicable to double skin façade, and the analysis of heating energy reduction showed that Type-2 (PCM $18^{\circ}C$) gained 15.9% more heat compared with Type-1 (Basic) and secondly, Type-3 (PCM $20^{\circ}C$) gained 11.5% more heat. Based on these findings, it is deemed possible that the use of energy for heating can be reduced when heat coming indoors increases during the heating period, and the appropriate temperature for PCM applied to the inner skin of a double skin façade to reduce heating energy in winter, Type-2 (PCM $18^{\circ}C$) showed the highest efficiency and Type-3 (PCM $20^{\circ}C$) was also deemed appropriate.